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Abstract

This work provides new results for the analysis of random sequences in terms of `p-

compressibility. The results characterize the degree in which a random sequences can

be approximated by its best k-sparse version under different rates of significant coeffi-

cients (compressibility analysis). In particular, the notion of strong `p-characterization is

introduced to denote a random sequence that has a well-defined asymptotic limit (sample-

wise) of its best k-term approximation error when a fixed rate of significant coefficients is

considered (fixed-rate analysis). The main theorem of this work shows that the rich fam-

ily of asymptotically mean stationary (AMS) processes has a strong `p-characterization

and we present results for the characterization and analysis of its `p-approximation error

function. Furthermore adding ergodicity in the analysis of AMS processes, we have a

theorem that shows that its approximation error function is constant and determined in

closed-form by the stationary mean of the process. The results and analysis presented in

this paper offer a contribution to the theory and understanding of discrete-time sparse

processes and, on the technical side, confirm how instrumental the point-wise ergodic

theorem is to determine the compressibility expression of discrete-time processes even

when stationarity and ergodicity assumptions are relaxed.
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the ergodic decomposition theorem.

Preprint submitted to Applied and Computational Harmonic Analysis December 29, 2018



1. Introduction

Quantifying sparsity and compressibility for random sequences has been a topic of

active research largely motivated by the results on sparse signal recovery and compressed

sensing (CS) [1, 2, 3, 4, 5, 6, 7]. Sparsity and compressibility can be understood, in gen-

eral, as the degree in which one can represent a random sequence (perfectly and loosely,5

respectively) by its best k-sparse version in the non-trivial regime when k (the number

of significant coefficients) is smaller than the signal or ambient dimension. Various forms

of compressibility for a random sequence have been used in different signal processing

problems, for instance in regression [8], signal reconstruction (in the classical random

Gaussian linear measuring setting used in CS) [2, 3], and inference-decision [9, 10].10

A process is an infinite dimensional random object and then the standard approach

used to measure compressibility for finite dimensional signals (based on the rate of decay

of the absolute approximation error) does not extend naturally for this infinite dimen-

sional analysis. Addressing this issue, Amini et al. [1] and Gribonval et al. [2] proposed

the use of a relative approximation error analysis to measure compressibility with the ob-15

jective to quantify the rate of the best k-approximation error with respect to the energy

of the signal, when the number of significant coefficients scales at a rate proportional

to the dimension of the signal. This approach offered a meaningful way to determine

the energy (and more generally the `p-norm) concentration signature of independent and

identically distributed (i.i.d.) processes [1, 2]. In particular, they introduced the concept20

of `p-compressibility to name a random sequence that has the capacity to concentrate

(with very high probability) almost all their `p-relative energy in an arbitrary small

number of coordinates (relative to the ambient dimension) of the canonical or innova-

tion domain. Two important results were presented for i.i.d. processes. [1, Theorem

3] showed that i.i.d. processes with heavy tail distribution (including the generalized25

Pareto, Students‘s t and log-logistic) are `p-compressible for some `p-norms. On the

other hand, [1, Theorem 1] showed that i.i.d, processes with exponentially decaying tails

(such as Gaussian, Laplacian and Generalized Gaussians) are not `p-compressible for any

`p-norm. Completing this analysis, Silva et al. [3] stipulated a necessary and sufficient
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condition over the process distribution to be `p-compressible (in the sense of Amini et30

al.[1, Def.6]) that reduces to look at the p-moment of the 1D marginal stationary distri-

bution of the process. Importantly, the proof of this result was rooted on the almost sure

convergence of two empirical distributions (random object function of the process) to

their respective probabilities as the number of samples goes to infinity1. This argument

offered the context to move from using the law of large numbers (to characterize i.i.d.35

processes) to the use of the point-wise ergodic theorem [11, 12]. Then a necessary and

sufficient condition for `p-compressibility was obtained for the family of stationary and

ergodic sources under the mild assumption that the process distribution projected on one

coordinate, i.e., its 1D marginal on (R,B(R)), has a density [3, Theorem 1]. Furthermore,

for non `p-compressible process Silva et al. [3] provided a closed-form expression for the40

so called `p-approximation error function, meaning that a stable asymptotic value of the

relative `p-approximation error is obtained when the rate of significant coefficient is given

(fixed-rate analysis).

Considering that the proof of the main result in [3] relies heavily on an almost sure

(with probability one) convergence of empirical means to their respective expectations,45

the idea of relaxing some of the assumptions of the process, in particular stationarity,

is an interesting direction in the pursuit of extending results for the analysis of `p-

compressibility for general discrete time processes. In this work, we have two new results

in this direction extending the compressibility analysis for a family of random sequences

where stationarity or ergodicity is not assumed. In particular, this work studies the50

rich family of processes with ergodic properties and, in particular, the important family

of asymptotically mean stationary (AMS) processes [11, 13]. This family of processes

has been studied in the context of source coding and channel coding problems where

its ergodic properties (with respect to the family of indicator functions) has been used

to extend fundamental performance limits in source and channel coding problems. In55

our context, the reason for studying AMS processes in the first place is because the

`p-characterization in [3] is fundamentally rooted on a form of ergodic property over a

family of indicator functions, which is precisely the family of measurable functions where

1These almost sure convergences created a family of typical sets that was used to prove the main

result in [3, Theorem 1].
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AMS sources has (by definition) a stable almost-sure asymptotic behavior [11].

1.1. Contributions of this Work60

Specifically, we consider a more refined and relevant (sample-wise) almost sure fixed-

rate analysis of `p-approximation errors, first considered by Gribonval et al [2] for the

analysis of i.i.d. processes, to determine the relationship between the rate of significant

coefficients and `p approximation error of the process. Our first main result (Theorem 1)

shows that this rate vs. approximation error has a well-defined expression function of the65

process distribution (in particular the stationary mean of the process) for the complete

collection of AMS and ergodic processes. This result relaxes stationary as well as some

of the regularity assumptions used in [3, Theorem 1] and, consequently, it is a significant

extension of that result. As a corollary of this theorem, we extend the dichotomy of

the `p-compressible process presented in [3, Theorem 1] to the family of AMS ergodic70

processes (see Corollaries 2 and 3). The second main result of this work (Theorem 2)

uses the celebrated ergodic decomposition theorem (EDT) [11] to extend the strong `p-

characterization to the family of AMS processes, where ergodicity and the stationarity

assumptions on the process have been relaxed. Remarkably, we show that this family of

processes do have a stable (almost sure) asymptotic `p-approximation error for any given75

rate of significant coefficients as the block of the analysis tends to infinity. Interestingly,

this limiting value is in general a measurable (non-constant) function of the process,

which is fully determined by the so-called ergodic decomposition (ED) function that

maps elements of the sample space of the process to stationary and ergodic components

[11].80

1.2. Organization of the Paper

The rest of the paper is organized as follows. Section 2 introduces notations, prelim-

inary results and some basic elements of the `p-compressibility analysis. In particular,

Section 2.1 introduces the fixed-rate almost sure approximation error analysis that is

the focus of this work. Section 3 presents the two main results of this paper for AMS85

processes. The summary and final discussion are presented in Section 4. To conclude,

Section 5 provides some context for the construction AMS sources based on the basic

principle of passing an innovation process through deterministic (coding) and random
4



(channel) processing stages. The proofs of the two main results are presented in Section

6, while the proofs of supporting results are relegated to the Appendices.90

2. Preliminaries

For any vector xn = (x1, .., xn) in Rn, let (xn,1, .., xn,n) ∈ Rn denote the ordered

vector such that |xn,1| ≥ |xn,2| ≥ . . . |xn,n|. For p > 0 and k ∈ {1, .., n}, let

σp(k, x
n) ≡ (|xn,k+1|p + . . .+ |xn,n|p)

1
p , (1)

be the best k-term `p-approximation error of xn, in the sense that if

Σnk ≡ {xn ∈ Rn : σp(k, x
n) = 0}

is the collection of k-sparse signals, then σp(k, x
n) is the solution of minx̃n∈Σnk

||xn − x̃n||`p .

Amini et al. [1] and Gribonval et al. [2] proposed the following relative best k-term

`p-approximation error

σ̃p(k, x
n) ≡ σp(k, x

n)

||xn||`p
∈ [0, 1], k ∈ {1, .., n} , (2)

for the analysis of infinite sequences, with the objective of extending notions of compress-

ibility to sequences that have infinite `p-norms in RN. More precisely, let X1, .., Xn, ... be

a one-side random sequence with values in (RN,B(RN)). (Xn)n≥1 is fully characterized by95

its consistent family of finite dimensional probabilities denoted by {µn ∈ P(Rn) : n ≥ 1}

[12], where Xn = (X1, .., Xn) ∼ µn for all n ≥ 1 and P(Rn) is the collection of probabil-

ities on the space (Rn,B(Rn)) [12, 11].

For d ∈ (0, 1), n ≥ 1 and k ∈ {1, .., n}, let us define the following set

An,kd ≡ {xn ∈ Rn : σ̃p(k, x
n) ≤ d} . (3)

Definition 1. [1, Defs.5 and 6] Let us consider a process (Xn)n∈N with distribution

µ = {µn, n ≥ 1}, the set An,kd is said to be ε-typical for Xn (or µn) if

µn(An,kd ) ≥ 1− ε. (4)
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For ε > 0 and d ∈ (0, 1),

κ̃p(d, ε, µ
n) ≡ min

{
k ∈ {1, . . . , n} : µn(An,kd ) ≥ 1− ε

}
, (5)

is the critical number of terms that makes An,kd ε-typical for µn.100

From the definition of critical dimension in (5), we can study the asymptotic rate of

innovation of the process relative to an `p-approximation error d ∈ (0, 1) by

r̃+
p (d, ε, µ) ≡ lim sup

n→∞

κ̃p(d, ε, µ
n)

n
, (6)

r̃−p (d, ε, µ) ≡ lim inf
n→∞

κ̃p(d, ε, µ
n)

n
, (7)

for all ε > 0, where µ ∈ P(RN) in the notation is a short-hand for the process distribution

given by {µn : n ≥ 1}.

Alternatively, we can consider the following fixed-rate asymptotic analysis:

Definition 2. [3, Defs.5 and 6] Let (Xn)n∈N be a process and let us consider ε ∈ (0, 1),

r ∈ (0, 1) and d ∈ (0, 1). The rate-distortion pair (r,d) is said to be `p-achievable for

(Xn) with probability ε, if there exists a sequence of positive integers (kn) such that

lim supn→∞
kn
n ≤ r and

lim inf
n→∞

µn(An,knd ) ≥ 1− ε. (8)

Then, the rate-approximation error function of (Xn)n∈N with probability ε is given by

rp(d, ε, µ) ≡ inf {r ∈ [0, 1], such that (r, d) is `p-achievable for (Xn) with probability ε} .

(9)

In general, it follows that rp(d, ε, µ) ≤ r̃+
p (d, ε, µ) [3, Prop. 2]. Furthermore, for the

important case of stationary and ergodic processes, it was shown in [3, Th. 1] that

rp(d, ε, µ) = r̃+
p (d, ε, µ) = r̃−p (d, ε, µ) for all d ∈ (0, 1). (10)

2.1. Revisiting the `p-Approximation Error Analysis

The approximation properties of a process (Xn)n∈N presented above relies on a weak105

convergence (in probability) of the event An,kd (see Defs. 1 and 2). Here, we introduce a

stronger (almost sure) convergence of the approximation error at a given rate of innova-

tion to study a more essential asymptotic indicator of the best k-term `p-approximation
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attributes of (Xn)n∈N. This notion will be meaningful for a large collection of processes

(details presented in Section 2.2) and it will imply specific approximation attributes for110

µ in terms of rp(d, ε, µ), r+
p (d, ε, µ), and r−p (d, ε, µ).

Definition 3. A process X = (Xn)n∈N, with distribution µ = {µn, n ≥ 1}, is said to

have a strong rate vs. `p best k-term approximation error characterization (in short,

a strong `p-characterization) if for any r ∈ (0, 1] and for any sequence of non-negative

integers (kn)n∈∈N satisfying that kn
n −→ r then

lim
n→∞

σ̃p(kn, X
n) = fp,µ(X, r), (11)

µ-almost surely, where fp,µ(X, r) is a well-defined (measurable) function of X.

A process with a strong `p-characterization has an almost everywhere asymptotic

(with n) pattern for its `p-approximation error when a finite rate of significant coefficients

is considered (i.e., a fixed-rate analysis). On top of this condition, an interesting scenario115

to consider is when the limiting function fp,µ(X, r), in (11), is constant µ-almost surely.

This can be interpreted as an ergodic property of X with respect to its best-k term

`p-approximation error, reflecting a typical (almost sure) approximation attribute that

is constant for the entire process2. The following result offers a connection between

fp,µ(X, r) and rp(d, ε, µ) in this very special case.120

Lemma 1. Let us consider a process X = (Xn)n∈N and its process distribution µ. Let us

assume that X has a strong `p-characterization (Def. 3) and that its limiting function in

(11) is constant µ-almost surely, denoted by (fp,µ(r))r∈(0,1]. Then we have the following:

i) If d ∈ {fp,µ(r), r ∈ (0, 1]} and d > 0, then there exists a unique ro ∈ (0, 1) such that

fp,µ(ro) = d, where for any r ∈ (0, 1) and (kn)n∈N such that kn
n −→ r it follows

that

lim
n→∞

µn(An,knd ) =

 1 if r > ro

0 if r < ro.
(12)

2 The next section shows that fp,µ(X, r) is a constant function for the family of AMS and ergodic

processes [11]. However, it is not constant function for stationary and AMS processes in general as

presented in Section 3.2.
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ii) On the other hand if fp,µ(ro) = 0 for some ro ∈ (0, 1), then ∀d ∈ (0, 1), for any

r ≥ ro and for any (kn)n∈N such that kn
n −→ r, it follows that

lim
n→∞

µn(An,knd ) = 1. (13)

This result shows that for a process with a strong `p-characterization and a constant

rate approximation error function, there is a 0-1 phase transition on the asymptotic125

probability of the events An,knd when kn/n −→ r, which is governed by (fp,µ(r))r∈(0,1] in

(11). More precisely, we have the following direct implication:

Corollary 1. Under the assumptions of Lemma 1, for any d ∈ {fp,µ(r), r ∈ (0, 1]}\{0},

and ε > 0

rp(d, ε, µ) = r̃+
p (d, ε, µ) = r̃−p (d, ε, µ) = f−1

p,µ(d). (14)

On the other hand, if fp,µ(r) = 0 for some ro ∈ (0, 1], then ∀ε ∈ (0, 1), ∀d ∈ (0, 1),

rp(d, ε, µ) ≤ r̃+
p (d, ε, µ) ≤ ro. (15)

It is worth noting in (14) that the weak `p-approximation error function rp(d, ε, µ)

is independent of ε and fully determined by (f−1
p,µ(d))d∈{fp,µ(r),r∈(0,1]}. This is consistent

with the result obtained for i.i.d. and stationary and ergodic processes in [3]. The proof130

of Lemma 1 and Corollary 1 are presented in Section 6.1.

2.2. AMS Processes

Let us briefly introduce the family of AMS processes that is the main object of study

of this work3.

Definition 4. A process X = (Xn)n∈N represented by the probability space (RN,B(RN), µ)

is said to have an ergodic property with respect to a measurable function f : (RN,B(RN))→

(R,B(R)) if the sample average

< f >n (X) =
1

n

n−1∑
i=0

f(T i(X)) (16)

3A complete exposition of sources with ergodic properties viewed as a dynamical system is presented

in [11, Chapts. 7, 8 and 10].
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converges µ-almost surely as n tends to infinity to a measurable function of (RN,B(RN))135

that is denoted by < f > (X). In (16), T denotes the standard shift operator4 [11].

Definition 5. A process X = (Xn)n∈N (or, equivalently, its underlying dynamical sys-

tem representation (RN,B(RN), µ, T )) is said to have an ergodic property with respect to

a class of measurable functions M if < f >n (X) convergences µ-almost surely to a

well-defined limit < f > (X) for any f ∈M.140

For any n > 0, let us define the set of arithmetic mean probabilities by

µn(F ) =
1

n

n−1∑
i=0

µ(T−i(F )), (17)

for all F ∈ B(RN).

Definition 6. A process (Xn)n≥0 with distribution µ is said to be asymptotically mean

stationary (AMS)5, if µn(F ) in (17) convergences as n goes to infinity for all F ∈ B(RN).

By the construction in (17), it is clear that {µn : n ≥ 1} ⊂ P(RN). Then if the limit

of µn exists, in the sense that (µn(F ))n≥1 convergences in R as n tends to infinity for145

any measurable event F ∈ B(RN), these values (indexed by F ∈ B(RN)) induce a well

defined probability in P(RN) [11, Lemma 7.4]. This object is called the stationary mean

of µ and it is denoted by µ̄. It can be proved that µ̄ is a stationary measure with respect

to T , in the sense that µ̄(F ) = µ̄(T−1(F )) for all F ∈ B(RN)6.

The following important result connects processes with ergodic properties and AMS150

processes:

Lemma 2. [11, Ths. 7.1 and 8.1] A necessary and sufficient condition for a process

(Xn)n≥0 (and its distribution µ) to be AMS is that it has an ergodic property with respect

to the family of indicator functions, i.e.,
{
1F (x) : F ∈ B(RN)

}
.

A stronger ergodic property to ask on X over a family M is that for all f ∈ M the155

sample average in (16) tends to a well-defined limit < f > (X) that is constant µ-almost

surely. For this analysis, it is relevant to introduce the following definition, which derives

from the celebrated point-wise ergodic theorem for AMS sources [11, Th. 7.5]:

4For x̄ ∈ RN, z̄ = T (x̄) is given by the coordinate-wise relationship zi = xi+1 for all i ≥ 1.
5By definition, if (Xn)n≥0 is stationary then it is AMS.
6The process (Xn) is said to be stationary if its distribution µ is stationary with respect to T .
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Definition 7. A process X (or its equivalent dynamical system (RN,B(RN), µ, T )) is said

to be ergodic, if the collection of invariant events (the events F such that T−1(F ) = F )160

has µ-probability 1 or 0 [12, 11].

The following result connects these concepts:

Lemma 3. [11, Th. 7.5 and Lem. 7.14] A necessary and sufficient condition for an

AMS process (Xn)n≥0 to have a constant ergodic property for the family
{
1F (x) : F ∈ B(RN)

}
is that (Xn)n≥0 is ergodic.165

In general, AMS processes are not ergodic. In fact, the following result provides

a condition for X to meet ergodicity that can be considered a form of a weak mixing

(asymptotic independence) condition [11].

Lemma 4. [11, Lem. 7.15] A necessary and sufficient condition for an AMS process

(Xn)n≥0 to be ergodic is that

lim
n→∞

n−1∑
i=0

µ(T−i(F ) ∪ F ) = µ̄(F )µ(F ) (18)

for all F ∈ F , where F ⊂ B(RN) is the collection that generates B(RN).

For the case when the process is stationary, it follows that µ̄(F ) = µ(F ) for all F ∈ B(RN),170

then the condition in (18) can be interpreted as a mixing (asymptotic independence)

property on (Xn)n≥0.

3. Characterizing AMS Processes

Here we present the two main results of this paper beginning with the scenario of an

AMS and ergodic process.175

3.1. Strong `p-Characterization for AMS and Ergodic Processes

When an AMS process satisfies the mixing condition in (18) and, consequently, it is

ergodic, we can state the following result:
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Theorem 1. Let X = (Xn)n∈N, or equivalently (RN,B(RN), µ)), be an AMS and ergodic

process (or dynamical system) with respect to T and let µ̄ = {µ̄n : n ≥ 1} be its stationary

mean. Then for any p > 0, r ∈ (0, 1], and (kn)n≥1 with kn → r, it follows that

lim
n→∞

σ̃p(kn, X
n
1 ) = fp,µ̄(r), µ− almost surely, (19)

where fp,µ̄(r) is a well defined function of the stationary mean µ̄ of X projected over

1 dimensional cylinders in B(RN) (i.e., the marginal µ̄1 in (R,B(R))). More precisely,180

(fp,µ̄(r))r∈(0,1] is function of µ̄1 ∈ P(R) with the following characterization:

i) If the function (xp)x∈R /∈ L1(µ̄1), then it follows that7

fp,µ̄(r) = 0, ∀r ∈ (0, 1].

ii) If (xp)x∈R ∈ L1(µ̄1) and µ̄1 � λ, we can introduce an induced probability vp ∈ P(R)

with vp � µ̄1 given by

vp(B) =

∫
B
|x|p dµ̄1(x)∫

R |x|
p
dµ̄1(x)

,∀B ∈ B(R).

Then for any r ∈ (0, 1],

fp,µ̄(r) = p

√
1− vp(Bτ(r)),

where Bτ ≡ (−∞, τ ] ∪ [τ,∞) and τ(r) > 0 is the unique solution of:

µ̄1(Bτ ) = r.

ii) If (xp)x∈R ∈ L1(µ̄1) and µ̄1 is not absolutely continuous with respect to λ,8 let us

introduce the set

R∗ ≡ {µ̄1(Bτ ), τ ∈ [0,∞)} and Cτ ≡ (−∞, τ) ∪ (τ,∞).

If r ∈ R∗, similarly to the previous case, it follows that

fp,µ̄(r) = p

√
1− vp(Bτ(r)),

7A real measurable function f is integrable with respect to v ∈ P(R) if
∫

R |f(x)| dv(x) < ∞. L1(v)

denotes the collection of v-integrable functions [12, 14].
8In other words, µ̄1 has atomic components.
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where τ(r) is the solution of µ̄1(Bτ ) = r.

On the other hand if r /∈ R∗, there is τo > 0 such that µ̄1({−τo, τo}) > 0 and

r ∈ [µ̄1(Cτo), µ̄1(Bτo)). Then ∃αo ∈ [0, 1) such that

r = µ̄1(Cτo) + αo(µ̄1(Bτo)− µ̄1(Cτo)),

where

fp,µ̄(r) = p

√
1− vp(Cτo)− αo(vp(Bτo)− vp(Cτo)).

In the last expression,

vp(Bτo)− vp(Cτo) = vp({−τo, τo}) = |τo|p · µ̄1({−τo, τo})/ ||(xp)||L1(µ̄1) > 0

if τo > 0.

The proof of this result is presented in Section 6.2.

3.1.1. Analysis and Interpretations of Theorem 1185

• The general result in (19) shows that any ergodic AMS process has a strong `p-

characterization (Def. 3) where its point-wise (almost sure) approximation error

function in (11) is completely determined by the 1D projection of its stationary

mean, i.e., µ̄1 ∈ P(R).

• Two important scenarios can be highlighted. The case (xp)x∈R /∈ L1(µ̄1) in which

fp,µ̄(r) = 0, ∀r ∈ (0, 1] and the case (xp)x∈R ∈ L1(µ̄1) that has a non-trivial ap-

proximation error function expressed by the following collection of (rate, distortion)

pairs:

{(r, fp,µ̄(r)), r ∈ (0, 1]} =
{

(φµ̄1(τ), p
√

1− φvp(τ)), τ ∈ [0,∞)
}

⋃
τn∈Yµ̄1

⋃
α∈[0,1)

{
(µ̄1(Cτn) + αµ̄1({−τn, τn}), p

√
1− vp(Cτn)− αvp({−τn, τn}))

}
(20)

where Ym = {τ ∈ [0,∞), µ̄1({−τ, τ}) > 0}, which is shown to be at most a count-190

able set. It is worth noting that the expression in (20) summarizes the continuous

and non-continuous result stated in ii) and iii). The details of this analysis are

presented in Section 6.2.
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• Considering Lemma 1 and Corollary 1 (in particular the relationship expressed

in Eq.(14) that connects the strong `p-caracterization in Def. 3 with the weak195

`p-characterization in (9)), Theorem 1 implies the following result:

Corollary 2. If (xp)x∈R ∈ L1(µ̄1) then for any d ∈ (0, 1) and ∀ε > 0,

rp(d, ε, µ) = r̃+
p (d, ε, µ) = r̃−p (d, ε, µ̄) = f−1

p,µ̄(d).

Otherwise, if (xp)x∈R /∈ L1(µ̄1), then for any d ∈ (0, 1) and ε > 0,

rp(d, ε, µ) = r̃+
p (d, ε, µ) = r̃−p (d, ε, µ̄) = 0.

• At this point, it is important to revisit the concept of `p-compressible processes

introduced by Amini et al. [1] in light of Theorem 1 and Corollary 2.

Definition 8. [1, Def.6] A process (Xn), with distribution µ, is said to be `p-

compressible for p > 0, if for any ε ∈ (0, 1) and d ∈ (0, 1), r̃+
p (d, ε, µ) = 0.200

Then from Lemma 1 and Theorem 1, the following can be stated:

Corollary 3. A necessary and sufficient condition for an AMS ergodic process

(with stationary mean µ̄) to be `p-compressible is that (xp)x∈R /∈ L1(µ̄1).

Corollary 3 extends the dichotomy presented for the stationary and ergodic case in

[3, Theorem 1].205

• In the case where (xp)x∈R ∈ L1(µ̄1), the function (fp,µ̄(r))r∈(0,1] given by (20)

is proved to be continuous, strictly non-increasing in the domain f−1
p,µ̄(0, 1) and

achieving the range [0, 1) in the sense that for all d ∈ [0, 1) there exists r ∈ (0, 1]

such that fp,µ̄(r)) = d, where in addition limr→0 fp,µ̄(r) = 1. The details of this

analysis are presented in Lemma 8 (Section 6.2 and Appendix A).210

• Furthermore when the process is not `p-compressible, i.e., (xp)x∈R ∈ L1(µ̄1), we

highlight two important sub-scenarios: the sparse case, meaning that µ̄1({0}) > 0,

and the non-sparse case meaning that µ̄1({0}) = 0. For the non `p-compressible

and sparse case, it follows that zero approximation error is achieved at rates that

are strictly smaller than 1. More precisely,215
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Corollary 4. Let us consider a sparse AMS process, meaning that µ̄1({0}) > 0,

with (xp)x∈R ∈ L1(µ̄1) then

fp,µ̄(r) = 0, ∀r ∈ [1− µ̄1({0}), 1],

while if r ∈ (0, 1− µ̄1({0})) then fp,µ̄(r) > 0.

On the other hand, for the `p-compressible and non-sparse case, zero distortion is

exclusively achieved at a rate equal to 1, i.e., fp,µ̄(r) > 0 if r ∈ (0, 1). This result

is elaborated in Section 6.2 and Appendix B.

3.2. Strong `p-Characterization for AMS Processes220

Relaxing the ergodic assumptions for an AMS source is the focus of this part. It is

worth noting that the ergodic result in Theorem 1 will be instrumental for this analysis

in view of the ergodic decomposition (ED) theorem for AMS sources nicely presented in

[11, Ths. 8.3 and 10.1] and references therein. In a nutshell, the ED theorem shows that

the stationary mean of an AMS process (see Def. 6) can be decomposed as a convex225

combination of stationary and ergodic distributions (called the ergodic components) in

(RN,B(RN)).

It is important to introduce one specific aspect of this result for the statement of

the following theorem. Let us consider an arbitrary AMS process (Xn)n≥1 equipped

with its process distribution µ ∈ P(RN) and its induced stationary mean µ̄ ∈ P(RN).

If we denote by P̃ ⊂ P(RN) the family of stationary and ergodic probabilities with

respect to the shift operator, then one of the implications of the ergodic decomposition

theorem [11, Ths. 8.3 and 10.1] is that there is a measurable space (Λ,L) indexing

this family, i.e., P̃ = {µλ, λ ∈ Λ}. More importantly, there is a measurable function

Ψ : (RN,B(RN)) → (Λ,L) that maps points in the sequence space RN to stationary and

ergodic components (more details will be given in Section 6.3). Then using Ψ, there is a

probability measure WΨ in (Λ,L) induced by µ in the standard way, where ∀A ∈ L, we

have that WΨ(A) = µ(Ψ−1(A)). One of the implications of the ED theorem [11, Ths.

14



8.3 and 10.1] is that for all F ∈ B(RN)9

µ̄(F ) =

∫
µλ(F )∂WΨ(λ). (21)

In other words, µ̄ can be expressed as the convex combination of stationary and er-

godic components {µλ, λ ∈ Λ}, where the mixture probability on (Λ,L) is induced by

the decomposition function Ψ, which is universal, meaning that the same function is230

valid to decompose any stationary distribution on (RN,B(RN)) in stationary and ergodic

components in the sense presented in (21).

The following result uses the ED theorem for AMS sources [11, Ths. 8.3 and 10.1] and

Theorem 1 to show that AMS sources have a strong `p-characterization as stated in Defi-

nition 3. Furthermore, the result offers an expression to specify the limit (fp,µ(X, r))(0,1]235

in (11).

Theorem 2. Let X = (Xn)n∈N be an AMS process with process distribution µ. Let us

consider P̃ = {µλ, λ ∈ Λ} the collection of stationary and ergodic probabilities and the

decomposition function Ψ : (RN,B(RN)) → (Λ,L) presented in the ED theorem [11, Th

10.1]. Then it follows that:240

i) The process X = (Xn)n∈N has a strong `p-characterization (Def. 3), where for any

r ∈ (0, 1] and (kn)n≥1 such that kn/n→ r

lim
n→∞

σ̃p(kn, X
n
1 ) = fp,µ(X, r) = fp,µΨ(X)

(r), µ− almost surely, (22)

where (fp,µλ(r)) has been introduced and developed in Theorem 110.

ii) For any r ∈ (0, 1], d ∈ [0, 1), and (kn) such that kn/n→ r,

lim
n→∞

µn(An,knd ) =

∫
lim
n→∞

µnλ(An,knd )∂WΨ(λ)

= µ
({

x ∈ RN : µΨ(x) is `p-compressible
})

+ µ
({

x ∈ RN : µΨ(x) is not `p-compressible and fp,µΨ(x)
(r) ≤ d

})
.

(23)

The proof of this result is presented in Section 6.3.

9The assumption here is that for any F , µλ(F ), as a function of λ, is measurable from (Λ,L) to

(R,B(R)) [11].
10Note that ∀λ ∈ Λ, µλ ∈ P̃ is a stationary and ergodic process.
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3.2.1. Analysis and Interpretations of Theorem 2:

• The first almost-sure point wise result in (22) provides a closed-form expression for

the `p-characterization of the process X given by fp,µ(X, r), which is a function of245

X (not a constant function in general) through the ED function Ψ(·) that maps X

to stationary and ergodic components in P̃.

• An interesting interpretation of the result in (22), which is a consequence of the

ED theorem, is that this limiting behaviour can be seen as if one selects at t = 0

an ergodic component µλ ∈ P̃ and then the process evolves with the statistic of250

µλ, which has a stable asymptotic characterized by Theorem 1. This is equivalent

to state that there is one stationary ergodic component that is active all the time,

but we do not know a priori which component. In fact to resolve the component

that is active, we need to know the entire process X, as the active component

λ ∈ Λ is given by Ψ(X). This interpretation has a natural connection with the255

standard setting used in universal source coding as clearly argued by Gray and

Kieffer in [13], where it is assumed that a process is fixed and belongs to a family

of process distributions from beginning to end, but the observer (or the designer of

the coding scheme) does not know which specific distribution is active. Therefore,

when observing a realization of an AMS process, what we are really observing is260

a realization of one (unknown a priori) stationary and ergodic component in P̃

and, consequently, its limiting behaviour is well defined as expressed in (22). The

fact that this limit is expressed as a function of Ψ can be understood from the

perspective that Ψ is the object that chooses the active component in P̃ from X.

• An intriguing aspect of this result, which is again a consequence of the ED theorem265

for AMS sources, is that if we look at the limit fp,µ(X, r) in (22), this is equal to

fp,µΨ(X)
(r), which does not depend on µ explicitly as long as µ is AMS. Then, we

could say that the ED function Ψ characterizes the asymptotic limit for any AMS

source universally.

• When we move to the weak `p-characterization result expressed in (23) (see Defs. 1270

and 2), here we can observe explicitly the role of the distribution µ in the analysis,

which is consistent with the almost sure result in (22). In the expression in the
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LHS of (23), we note that the probability µn(An,knd ) has a limit determined by the

pair (r, d) and the distribution µ.

• Complementing the previous point, there are two clear terms in (23): the first is275

the probability (over µ) of the sequences that map through Ψ(·) to `p-compressible

components in P̃. The second term is the probability of the sequences that map

through Ψ(·) to ergodic components that are not `p-compressible and satisfy that

its `p-approximation error function (which is characterized in Theorem 1) evalu-

ated at the rate r is smaller than the distortion d. Note that these two events on280

(RN,B(RN)) are distribution independent (universals) and therefore can be deter-

mined a priori (independent of µ) for this weak `p-compressibility analysis.

4. Summary and Discussion of the Results

In this work, we revisit the notion of `p-compressibility focusing on the study of the

almost sure (with probability one) limit of the `p-relative best k-term approximation285

error when a fixed-rate of significant coefficients is considered for the analysis. We con-

sider the study of processes with general ergodic properties relaxing the stationarity and

ergodic assumptions considered in previous work. Interestingly, we found that the fam-

ily of asymptotically mean stationary (AMS) processes has an (almost-sure) stable `p

approximation error behavior (sample-wise) when considering any arbitrary rate of sig-290

nificant coefficients per dimension of the signal. In particular, our two main results offer

expressions for this limit, which is a function of the entire process through the known er-

godic decomposition (ED) mapping used in the proof the celebrated ED theorem. When

ergodicity is added and we assume an AMS ergodic source, the `p-approximation error

function reduces to a closed-form expression of the stationary mean of the process. As a295

corollary, we extend the dichotomy between `p-compressibility and non `p-compressibility

observed in a previous result [3, Th.1].

In summary, the two main theorems of this paper significantly extend previous results

in the literature of this problem (that were valid under the assumption of stationary,

ergodicity and some extra regularity conditions on the process distributions) and on the300

technical side show the important role that the general point-wise ergodic theorem and,

in particular, the ED theorem play for the extension of the `p-compressibility analysis to
17



families of processes with general ergodic properties. Finally, from the proof of Theorem

1, we notice that being able to impose an ergodic property for the family of indicator

functions is essential to obtain a stable (almost sure) result for the `p-approximation error305

function, in the way expressed in Def. 3, and, consequently, the AMS assumption for the

process (see Lemma 2) seems to be crucial to achieve the desired strong (almost-sure)

`p-approximation property declared in Definition 3.

5. On the Construction and Processing of AMS Processes

To conclude this paper, we provide some context to support the application of our310

results in Section 3. We consider a general generative scenario where a process is con-

structed as the output of an innovation source passing through a signal processor (or

coding process) and a random corruption (or channel). In other words, we want to have

an idea of the family of operations on a stationary and ergodic source (for example an

i.i.d. source) that produces a process with a strong `p-characterization (Def. 3). For that315

we briefly revisit known results that guarantee that a process has stationarity and/or er-

godic properties when it is produced (deterministically or randomly) from a stationary

and ergodic source.11

A general way of representing a transformation of a process X = (Xn)n∈N into another

process is using the concept of a channel. A channel is a collection of probabilities (or

process distributions) in (RN,B(RN)) indexed by elements in RN, i.e., C =
{
vx̄, x̄ ∈ RN

}
⊂

P(RN) such that for all F ∈ B(RN) vx̄(F ) is a measurable function from (RN,B(RN)) to

(R,B(R)). Then given µ the process distribution of (Xn)n∈N, the channel C induces a

joint distribution in the product space (RN × RN,B(RN × RN)) by

µC(F ×G) =

∫
x̄∈F

vx̄(G)dµ(x̄), ∀F,G ∈ B(RN).

The joint process distribution is denoted by µC. Then a new process Y = (Yn)n∈N

is obtained at the output of the channel when (Xn)n∈N is its input. If we denote the

distribution of Y by v, this is obtained by the marginalization of µC, i.e., v(G) ≡ P(Y ∈

G) = µC(RN×G) for all G ∈ B(RN). Considering the shift operator T uses to characterize

11A complete exposition can be found in [15, Ch.2].
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stationarity and ergodic properties for processes in RN (Sec. 2.2), the channel C ={
vx̄, x̄ ∈ RN

}
is said to be stationary with respect to T if [15, Sec. 2.3]

vT (x̄)(G) = vx̄(T−1(G)),∀x̄ ∈ RN,∀G ∈ B(RN).

Then, the following result can be obtained:

Lemma 5. [15, Lemma 2.2] Let us consider an AMS process X (with stationary mean

given by µ̄) as the input of a stationary channel C =
{
vx̄, x̄ ∈ RN

}
. Then the output

process Y is AMS and its stationary mean is given by12

v̄(G) = lim
n−→∞

1/n

n−1∑
i=0

v(T−iG) = µ̄C(RN ×G) for all G ∈ B(RN).

Remarkably, Lemma 5 shows a general (stationary) random approach to produce320

AMS processes from another AMS process. Furthermore, the result provides a closed

expression for the resulting stationary mean (function of the stationary mean of the input

µ̄ and the channel C), which is the object that determines its strong `p-compressibility

signature from Theorems 1 and 2.

Furthermore adding ergodicity, we highlight the following result:325

Lemma 6. [15, Lemma 2.7] If the channel C =
{
vx̄, x̄ ∈ RN

}
is weakly mixing in the

sense that for all x̄ ∈ RN and measurable rectangles F , G ∈ B(RN)

lim
n−→∞

1

n

n−1∑
i=0

∣∣vx̄(T−i(F ) ∩G)− vx̄(T−i(F ))vx̄(G)
∣∣ = 0,

then if the input process is AMS and ergodic then the output of the channel is also AMS

and ergodic.

We will cover two important families of channels below.

5.1. Deterministic Channels: Stationary Codes and LTI Systems

A deterministic transformation (or measurable function) of an AMS process X =330

(Xn)n∈N can be seen as an important example of the channel framework presented above.

12The result shows more generally that the joint process (X,Y) is AMS with respect to T × T (T ×

T (x̄, ȳ) = (T (x̄), T (ȳ))), where its stationary mean is µ̄C.
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Let us consider a measurable function f : (RN,B(RN)) −→ (RN,B(RN)) and the induced

process Y = f(X), where the process distribution is v(G) = µ(f−1(G)). This form

of encoding X is a special case of a channel, where vfx̄(G) = 1f−1(G)(x̄). Importantly,

the deterministic channel Cf ≡
{
vfx̄ , x̄ ∈ RN

}
induced by f is stationary if, and only if,335

f(T (x̄)) = T (f(x̄)) [15]. In this context, we say that f produces a stationary coding of

X.

Corollary 5. Any stationary coding of an AMS process produces an AMS process, where

the stationary mean of Y is given by v̄(G) = µ̄(f−1(G)) for all G ∈ B(RN).

The proof of this result follows directly from Lemma 5.340

There is a stronger result for deterministic and stationary channels:

Lemma 7. [15, Lemma 2.4] Let us consider a deterministic and stationary channel Cf .

If the input process to Cf is AMS and ergodic then the output process is AMS and ergodic.

It is worth noting that a direct way of constructing stationary coding is by a scalar

measurable function φ : (RN,B(RN)) −→ (R,B(R)), where given x̄ ∈ RN the output345

is produced by yn = φ(Tn(x̄)) for all n ≥ 0.13 Then, there is an infinity collection

of stationary coding that preserves the AMS and ergodic characteristics of an input

process. Two emblematic cases to consider are the finite length sliding block code where

yn = φ(Xn+M , ...., Xn+D) with D > M ≥ 0 and φ : RD−M+1 −→ R, and the case when

φ is linear function, i.e., φ(x̄) =
∑
i≥0 ai · xi, and, consequently, f produces a linear and350

time invariant (LTI) coding of X.14

5.2. Memoryless Channels

A channel C =
{
vx̄, x̄ ∈ RN

}
is said to be memoryless if for any finite dimensional

cylinder ×i∈JFi ∈ B(RN) and for any x̄ ∈ RN it follows that vx(×i∈JFi) =
∏
i∈J pxi(Fi)

where {px, x ∈ R} ⊂ P(R). Basically we have that probabilities of the channel decom-355

pose as the multiplication of its marginals (memoryless). The classical example is the

13Conversely, for any stationary code f there is a function φ(x̄) = π0(f(x̄)) that induces f , where π0()

denotes the first coordinate projection of the sequence.
14Stationary codings play an important role in ergodic theory for the analysis of isomorphic processes

[11].
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additive white Gaussian noise (AWGN) channel used widely in signal processing and

communications where px = N (µx, σ) is a normal distribution with the mean depending

on x and σ > 0. It is simple to check that memoryless channels are stationary. Con-

sequently, Lemma 5 tells us that a memoryless corruption of an AMS process produces360

an AMS process. In addition, the mixing condition of Lemma 6 is simple to verify for

memoryless channels. Consequently, a memoryless corruption of an AMS and ergodic

process preserves the ergodicity of the input at the output of the channel.

Finally, using Lemmas 5, 6 and 7, we can have a rich collection of processing steps

where AMS as well as AMS and ergodicity are preserved from the input to the output365

and, consequently, Theorems 1 and 2 can be adopted for compressibility analysis of these

processes.

6. Proofs of the Main Results

6.1. Lemma 1 (and Corollary 1)

Proof: First, some properties of (fp,µ(r))r∈(0,1] will be needed.370

Proposition 1. It follows that:

• If 0 < r1 < r2 ≤ 1, then fp,µ(r2) ≤ fp,µ(r1).

• If 0 < r1 < r2 ≤ 1 and fp,µ(r2) = fp,µ(r1), then fp,µ(r2) = fp,µ(r1) = 0.

The proof of this result derives directly from the definition of σ̃p(kn, X
n) and some basic

inequalities.15 From Proposition 1, fp,µ(·) is strictly monotonic and injective in the375

domain f−1
p,µ(0, 1). Therefore, f−1

p,µ(d) is well defined for any d ∈ {fp,µ(r), r ∈ (0, 1]}\{0}.

Let us first consider the case d ∈ {fp,µ(r), r ∈ (0, 1]} \ {0} assuming for a moment

that this set is non-empty. Then, there exists ro ∈ (0, 1) such that d = fp,µ(ro), where

by the strict monotonicity of fp,µ(·), we have that fp,µ(r2) < d < fp,µ(r1) for any

r1 < ro < r2 ≤ 1. On the other hand, using the convergence of the approximation error

to the function fp,µ(r) in (11) and the definition of An,kd in (3), it follows that for any

r ∈ (0, 1), kn with kn/n −→ r, and ε > 0

lim
n→∞

µn(An,knfp,µ(r)+ε) = 1 and (24)

15This result is revisited and proved (including additional properties) in Lemma 8, Section 6.2.
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lim
n→∞

µn(An,knfp,µ(r)−ε) = 0. (25)

Then assuming that kn/n −→ ro, if r > ro then fp,µ(r) < d and from (24) we obtain

that limn→∞ µn(An,knd ) = 1. On the other hand, if r < ro then fp,µ(r) > d and from

(25) we obtain that limn→∞ µn(An,knd ) = 0. This proves (12).

Remark 1. Adopting the definition in (9) and setting ε > 0, it follows from (24) and380

(25) that for any arbitrary small δ > 0, ro − δ ≤ rp(d, ε, µ) ≤ ro + δ, and, consequently,

rp(d, ε, µ) = ro = f−1
p,µ(d). Furthermore, adopting the definition of κ̃p(d, ε, µ

n) in (5) with

a fixed ε > 0, and its asymptotic limits (with n) in (6) and (7), it follows from (24) and

(25) that for any arbitrary small δ > 0, ro − δ ≤ r̃−p (d, ε, µ) ≤ r̃+
p (d, ε, µ) ≤ ro + δ, and,

consequently, r̃−p (d, ε, µ) = r̃+
p (d, ε, µ) = f−1

p,µ(d).385

Concerning the second part of the result, let us assume ro ∈ (0, 1) such that fp,µ(ro) =

0. From the convergence in (11) assumed in this result, we have that if (kn)n≥1 is such

that kn/n −→ ro then

lim
n→∞

σ̃p(kn, X
n) = 0, µ− a.s. (26)

Then adopting An,kd in (3), it follows from (26) that for any d > 0

lim
n→∞

µn(An,knd ) = 1, (27)

which proves (13).

Remark 2. Using the definition of κ̃p(d, ε, µ
n) in (5), from (27) it is clear that for any

ε > 0, κ̃p(d, ε, µ
n) ≤ kn eventually (in n). From (6), this last inequality implies that

r̃+
p (d, ε, µ) ≤ ro.

390

6.2. Theorem 1

Proof: First, we introduce some preliminary results, definitions, and properties that

will be essential to elaborate the main argument.
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6.2.1. Preliminaries

First, for the case of AMS and ergodic sources (see Lemmas 2 and 4), the ergodic

theorem [11, Th. 7.5] tells us that for any `1-integrable function with respect to µ̄1,

f : (R,B(R)) −→ (R,B(R)), the sampling mean (computed with a realization of X)

converges with probability one (with respect to µ) to the expectation of f with respect

to µ̄1, i.e.,

lim
n−→∞

1

n

n−1∑
i=0

f(Xi) = EX∼µ̄1
(f(X)) <∞, µ− a.s. (28)

Therefore, we have that for any B ∈ B(R),

lim
n−→∞

1

n

n−1∑
i=0

1B(Xi) = µ̄1(B), µ− a.s. (29)

In addition, if (xp)x∈R ∈ L1(µ̄1) then for any B ∈ B(R),

lim
n−→∞

1

n

n−1∑
i=0

1B(Xi) · |Xi|p =

∫
B

|x|p dµ̄1(x) = ||(xp)||L1(µ̄1) , µ− a.s. (30)

and, consequently,

lim
n−→∞

∑n−1
i=0 1B(Xi) · |Xi|p∑n−1

i=0 |Xi|p
= vp(B) =

∫
B
|x|p dµ̄1(x)

||(xp)||L1(µ̄1)

, µ− a.s. (31)

Let us define the tail distribution function of m ∈ P(R) by φm(τ) ≡ m(Bτ ) for all395

τ ∈ [0,∞). It is simple to verify that:

Proposition 2. For any m ∈ P(R)

i) if τ1 > τ2 then φm(τ1) ≤ φm(τ2) and φm(τ1) = φm(τ2) if, and only if, m([τ2, τ1) ∪

(−τ1, τ2]) = 0.

ii) φm(0) = 1 and limτ−→∞ φm(τ) = 0.400

iii) (φm(τ))τ≥0 is left continuous and φ+
m(τ) ≡ limtn−→τ,tn>τ φm(tn) = φm(τ)−m({τ}∪

{−τ}).

Therefore, (φm(τ)) is a continuous function except on the points wherem has atomic mass

(see Fig. 1). From a well-known result on real analysis [16], using the fact that (φm(τ))

is non-decreasing then this function has at most a countable number of discontinuities.405
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τ0

µ̄(Cτ0 ) = φµ̄(τ0) − µ̄({τ0} ∪ {−τ0})

φµ̄(τ0)

1

µ̄({τ} ∪ {−τ})

φµ̄(τ)

Figure 1: Illustration of the tail distribution function φµ̄(τ) of µ̄ ∈ P(R) with a single discontinuous

point at τo > 0 in [0,∞).

This means that m has at most a countable number of non-zero probability events on the

collection {{τ} ∪ {−τ} , τ ∈ [0,∞)} ⊂ B(R) that we index and denote by Ym ⊂ [0,∞).

By definition of vp, the discontinuity points of (φµ̄1
(τ)) and (φvp(τ)) agree16 from the

fact that if τ > 0 then µ̄1({τ} ∪ {−τ}) = 0 ⇔ vp({τ} ∪ {−τ}) = 0. Therefore, we have

that Yvp = Yµ̄1 \ {0}. For the rest of the proof, it will be relevant to consider the range

of these tail functions. These can be characterized as follows (see Figure 1):

R∗µ̄1
≡ {φµ̄1

(τ), τ ≥ 0} = (0, 1] \
⋃

τn∈Yµ̄1

[µ̄1(Cτn), µ̄1(Bτn)), (32)

R∗vp ≡
{
φvp(τ), τ ≥ 0

}
= (0, 1] \

⋃
τn∈Yµ̄1

\{0}

[vp(Cτn), vp(Bτn)), (33)

where Yµ̄1
is either the empty set, or a finite, or a countable set.

With the tail functions (φµ̄1(τ)) and (φvp(τ)) we can introduce the collection{
(φµ̄1(τ), p

√
1− φvp(τ)), τ ∈ [0,∞)

}
(34)

that the first coordinate covers the range R∗µ̄1
. For the non-continuous case, i.e., |Yµ̄1 | >

0, we can complete the range on the first coordinate to cover the non-achievable values

16There is only one possible exception when τ = 0.
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⋃
τn∈Yµ̄1

[µ̄1(Cτn), µ̄1(Bτn)) in (32) (Fig. 1 illustrates this range when Yµ̄1 = {τ0}) by

the following simple extension:

Fµ̄1 ≡
{

(φµ̄1(τ), p
√

1− φvp(τ)), τ ∈ [0,∞)
}

⋃
τn∈Yµ̄1

{
(µ̄1(Cτn) + αµ̄1({−τn, τn}), p

√
1− vp(Cτn)− αvp({−τn, τn})), α ∈ [0, 1)

}
.

(35)

The collection of pairs in Fµ̄1 defines a function from (0, 1] to [0, 1). In fact for any

r ∈ (0, 1] we have that either: r ∈ R∗µ̄1
in (32) for which there is a unique τ∗ ≥ 0 such410

that r = φµ̄1
(τ∗) and, consequently, there is only one d = p

√
1− φvp(τ∗) ∈ [0, 1) such

that (r, d) ∈ Fµ̄1
, or r ∈

⋃
τn∈Yµ̄1

[µ̄1(Cτn), µ̄1(Bτn)), for which there is a unique pair

(τ∗, α∗) ∈ Yµ̄1 × [0, 1) such that r = µ̄1(Cτ∗) + α∗µ̄1({−τ∗} ∪ {τ∗}) and, consequently,

a unique d = p
√

1− φvp(τ∗)− α∗vp({−τ∗} ∪ {τ∗}) such that again (r, d) ∈ Fµ̄1 . This

means that the set Fµ̄1
induces a function that we denote by (fµ̄1

(r))r∈(0,1]. In addition,415

from the properties of (φµ̄1
(τ)) and (φvp(τ)) the following can be shown:

Lemma 8. The function induced by the set Fµ̄1
in (35) has the following properties:

i) (fµ̄1(r)) is continuous in (0, 1].

ii) (fµ̄1(r)) is strictly decreasing in the domain f−1
µ̄1

((0, 1)) ⊂ (0, 1].17 More precisely,

if 0 < r1 < r2 ≤ 1 then either fµ̄1(r2) < fµ̄1(r1), or fµ̄1(r1) = fµ̄1(r2) = 0.420

Furthermore, (fµ̄1
(r)) is strictly monotonic in (0, 1] if, and only if, 0 /∈ Yµ̄1

.

iii) The range of (fµ̄1
(r))r∈(0,1] is [0, 1).

The proof of this result is presented in Appendix A.

We are in a position to prove the main result:

6.2.2. Main Argument — Case (xp)x∈R ∈ L1(µ̄1)425

Let us assume that (xp)x∈R ∈ L1(µ̄1). Let us consider an arbitrary r ∈ [1, 0) and a

sequence (kn)n≥1 such kn/n −→ r as n tends to infinity.

17f−1
µ̄1

((0, 1)) = (0, 1) if, and only if, 0 /∈ Yµ̄1 .

25



2.1) Continuous Scenario: Let us first consider the case where r ∈ int(R∗µ̄1
), i.e.,

r ∈ R∗µ̄1
\{µ̄1(Bτn), τn ∈ Yµ̄1

}, and, consequently, there is τo such that r = φµ̄1
(τo) being

τo a continuous point of the tail function φµ̄1
(·) (see iii) in Proposition 2).430

Let us define nτ (xn) ≡
∑n
i=1 1Bτ (xi), then using the (point-wise) ergodic result in

(30), it follows that for all τ ≥ 0

lim
n→∞

nτ (Xn)

n
= φµ̄1

(τ), µ− a.s., (36)

and from (31) and (2)

lim
n→∞

σ̃p(nτ (Xn), Xn) = p

√
1− φvp(τ), µ− a.s. (37)

In other words, we have the following family of (typical) sets:

Aτ ≡
{

(xn)n≥0, lim
n→∞

nτ (xn)

n
= φµ̄1

(τ)

}
(38)

Bτ ≡
{

(xn)n≥0, lim
n→∞

σ̃p(nτ (xn), xn) = p

√
1− φvp(τ)

}
, (39)

satisfying µ(Aτ ∩ Bτ ) = 1 for all τ ≥ 0.

Using the fact that φµ̄1
(·) is continuous at τo and the observation that (φµ̄1

(·)) has

at most a countable number of discontinuities, there is δ ∈ (0, r) where the interval

(r− δ, r+ δ) defines an open domain containing τo, given by (τ1, τ2) = φ−1
µ̄1

((r− δ, r+ δ))

where the function (φµ̄1(·)) is continuous (see Figure 2). Associated with this domain,

we can consider
{
φvp(τ), τ ∈ (τ1, τ2)

}
= (v2, v1) where by monotonicity v1 = φvp(τ1) and

v2 = φvp(τ2) (see Figure 2). It is simple to show (by the construction of vp from µ̄1)18

that for any τ > 0 and ε > 0

φµ̄1(τ + ε) < φµ̄1(τ) if, and only if, φvp(τ + ε) < φvp(τ). (40)

Therefore, this mutual absolutely continuity property between µ̄1 and vp implies that

φµ̄1
(τ1) > φµ̄1

(τo) = r ⇔ φvp(τ1) = v1 > φvp(τo), and (41)

φµ̄1
(τ2) < φµ̄1

(τo) = r ⇔ φvp(τ2) = v2 < φvp(τo). (42)

18Note that for any B ∈ B(R) where 0 /∈ B, µ̄1(B) = 0 if, and only if, vp(B) = 0.
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τ1τ0 τ2

r − δ

r

r + δ

φµ̄1
(τ)

τ1τ0 τ2

φvp (τ2) = v2

φvp (τ0) = v(r)

φvp (τ1) = v1

φvp (τ)

Figure 2: Illustration of the tail distribution functions of µ̄1 and vp at a continuous point τ0, where

r = φµ̄1 (τ0).

We can then find M > 0 sufficiently large such that for all m ≥M , φvp(τo) + 1/m <

v1. For any of these m ≥ M , there is τm ∈ (τ1, τ2) (from the continuity of φvp(·) in

(τ1, τ2)) such that φvp(τm) = φvp(τo)+1/m, where again by (40) φµ̄1(τm) > φµ̄1(τo) = r.

Therefore, for any m ≥M and ∀(xn)n≥0 ∈ Aτm ∩Bτm , nτm(xn) > kn eventually in n (as

n tends to infinity). This comes from the assumption that kn/n −→ r < φµ̄1
(τm) and

the definition of Aτm given in (38). Consequently, under this context, it follows that

σ̃p(nτm(xn), xn) ≤ σ̃p(kn, xn), (43)

eventually in n. Finally, using explicitly that (xn)n≥1 ∈ Bτm (see Eq.(39)), we have that

p

√
1− (φvp(τo) + 1/m) ≤ lim inf

n→∞
σ̃p(kn, x

n). (44)

Repeating this argument, if (xn)n≥1 ∈
⋂
m≥M (Aτm ∩ Bτm) it follows from (44) that19

p

√
1− φvp(τo) ≤ lim inf

n→∞
σ̃p(kn, x

n). (45)

By the sigma additivity [12] and the fact that from the ergodic theorem µ(Aτm∩Bτm) = 1

for any m ≥ 1, it follows that

p

√
1− φvp(τo) ≤ lim inf

n→∞
σ̃p(kn, X

n), µ− a.s. (46)

19This is obtained by taking the supremum (m ≥ M) in the LHS of (44) and using the continuity of

the function p
√

1− x in x ∈ (0, 1).
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The exact argument can be used to prove that

lim sup
n→∞

σ̃p(kn, X
n) ≤ p

√
1− φvp(τo), µ− a.s.. (47)

by using the sequences τ̃m such that φvp(τ̃m) = φvp(τo) − 1/m for m ≥ M̃ and M̃

sufficiently large. This is omitted for the sake of space. Finally, (46) and (47) prove the

result in the continuous case.20
435

2.2) Discontinuous scenario: Let us consider the case where r /∈ R∗µ̄1
(see Eq.(32)),

which means that ∃τi ∈ Yµ̄1
such that

r ∈ [µ̄1(Cτi), µ̄1(Bτi)), (48)

(see the illustration in Fig. 3). For the moment let us assume that r ∈ (µ̄1(Cτi), µ̄1(Bτi)),
21

then there is a unique αo ∈ (0, 1) such that

r = µ̄1(Cτi) + αo · µ̄1({−τi, τi}). (49)

Here we need to use an extended version of the point-wise ergodic result in (28). For

that, let us introduce an i.i.d. Bernoulli process Y = (Yi)i≥0 of parameter ρ ∈ [0, 1],

where P(Yi = 1) = ρ for all i ≥ 0, that is independent of X = (Xn)n≥0. Let us denote

by η its (i.i.d) process distribution in {0, 1}N
. Then, from the ergodic result for AMS

process in (28) it follows, as a natural extension of (29), that for all τ ≥ 0

lim
n−→∞

1

n

n−1∑
i=0

1Cτ (Xi) +
1

n

n−1∑
i=0

1{−τ,τ}(Xi) · Yi = µ̄1(Cτ ) + µ̄1({−τ, τ})ρ, (50)

lim
n−→∞

∑n−1
i=0 (1Cτ (Xi) + 1{−τ,τ}(Xi)Yi) |Xi|p∑n−1

i=0 |Xi|p
=

∫
Cτ
|x|p dµ̄1(x) + µ̄1({−τ, τ})τpρ

||(xp)||L1(µ̄1)

,

(51)

20The proof assumes that r < 1. The proof for the asymmetric case when r = 1 ∈ int(R∗µ̄1
), i.e., r = 1

is a continuous point of φµ̄1 (·) follows from the argument above. On the one hand, σ̃p(kn, xn) ≥ 0 for

any kn by definition. On the other hand, the argument used to obtain (47) follows without any problem

in this context, implying that lim supn→∞ σ̃p(kn, Xn) ≤ p
√

1− φvp (τo) = 0 µ − a.s., considering that

τo = 0 in this case.
21We left the case r ∈ {µ̄1(Cτn ) : τn ∈ Yµ̄1} ∪ {µ̄1(Bτn ) : τn ∈ Yµ̄1} for the mixed scenario below.
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τi

µ̄1(Cτi
)

v = µ̄1(Cτi
) + α0 · µ̄1({−τi} ∪ {τi})

µ̄1(Bτi
)

µ̄({τi} ∪ {−τi}) > 0

φµ̄1
(τ)

τi

v2 = vp (Cτi
)

v(r) = vp (Cτi
) + α0 · vp ({−τi} ∪ {τi})

v1 = vp (Bτi
)

vp({τi} ∪ {−τi}) > 0

φvp (τ)

Figure 3: Illustration of the tail distribution functions of µ̄1 and vp at a discontinuous point τi > 0.

with probability one with respect to joint process distribution of (X,Y) denoted by µ×η.

Returning to the argument, let us consider an arbitrary (kn)≥1 such that kn/n −→ r

as n goes to infinity. Let us consider αm ≡ αo + 1/m and M sufficiently large to make

αM < 1. For any m ≥M , let us construct an auxiliary i.i.d. Bernoulli process Y(αm) ≡

(Yi)i≥0, where P(Yi = 1) = αm. The process distribution of Y(αm) is denoted by ηm.

In this context, if we define the a joint count function nτ (xn, yn) ≡
∑n−1
i=0 1Cτ (xi) +
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∑n−1
i=0 1{τ}∪{−τ}(xi) · yi it follows from (50) and (51) that for τi introduced in (48),

lim
n−→∞

nτi(X
n, Y n)

n
= µ̄1(Cτi) + (αo + 1/m) · µ̄1({−τi, τi}), (52)

lim
n−→∞

σ̃p(nτi(X
n, Y n), Xn) = p

√
1− (vp(Cτi)− (αo + 1/m) · vp({−τi, τi})) (53)

µ × ηm -almost surely. Importantly in (53), vp({−τi, τi}) > 0 from the fact that

µ̄1({−τi, τi}) > 0.22 Let us consider an arbitrary (typical) sequence ((xn)n≥1, (yn)n≥1)

satisfying the limiting conditions in (52) and (53). From (52), it follows that nτ (xn, yn) >

kn eventually in n as kn/n −→ r = µ̄1(Cτi) +αo · µ̄1({−τi, τi}) < µ̄1(Cτi) + (αo + 1/m) ·

µ̄1({−τi, τi}) by construction. Therefore,

σ̃p(nτ (xn, yn), xn) ≤ σ̃p(kn, xn), eventually in n. (54)

But the left hand side of (54) converges to p
√

1− (vp(Cτi)− (αo + 1/m) · vp({−τi, τi}))

as n tends to infinity by the construction of ((xn)n≥1, (yn)n≥1). Finally, by the almost

sure convergence in (52) and (53), it follows that

lim inf
n−→∞

σ̃p(kn, X
n) ≥ p

√
1− (vp(Cτi)− (αo + 1/m) · vp({−τi, τi})), (55)

µ- almost surely.23

Let us denote by Dτm ≡ {(xn)n≥0, where (55) holds}. From (55), µ(Dτm) = 1 and

by sigma-additivity [12] it follows that µ(∩m≥MDτm) = 1, which implies that

lim inf
n−→∞

σ̃p(kn, X
n) ≥ p

√
1− (vp(Cτi)− αo · vp({−τi, τi})), µ− a.s. (56)

To conclude, an equivalent (symmetric) argument can be used to prove that

lim sup
n−→∞

σ̃p(kn, X
n) ≤ p

√
1− (vp(Cτi)− αo · vp({−τi, τi})), µ− a.s., (57)

using α̃m ≡ αo − 1/m and M̃ sufficiently large to make α̃M̃ > 0. For sake of space the

proof is omitted. This concludes the result in this case.440

2.3) Mixed scenario: Here we consider the scenario where r ∈ {µ̄1(Bτn), µ̄1(Cτn) : τn ∈ Yµ̄1
}.

The proof reduces to the same procedure presented above in the continuous and discon-

tinues scenarios, but adopted in a mixed form. A sketch with the steps will be provided

as no new technical elements are introduced here.

22Here we assume that τi > 0. The important sparse case when τi = 0 will be treated below.
23We remove the dependency on ηm, as both terms in (55) (in the limit) turn out to be independent

of the auxiliary process (Yi)i≥0.
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For r = µ̄1(Bτi) for τi ∈ Yµ̄1 and τi 6= 0, the same argument adopted in the continuos

case (to obtain (46)) can be adopted here to obtain that

lim inf
n→∞

σ̃p(kn, X
n) ≥ p

√
1− φvp(τi), µ− a.s., (58)

for any sequence (kn)n≥1 such that kn/n −→ µ̄1(Bτi). For the other inequality, the

strategy with the auxiliary Bernoulli process presented in the proof of the discontinuous

case can be adopted considering αo = 1 and α̃m = 1−1/m for m sufficiently large. Then,

a result equivalent to (57) is obtained, meaning in this specific context that

lim sup
n→∞

σ̃p(kn, X
n) ≤ p

√
1− φvp(τi), µ− a.s. (59)

For r = µ̄1(Cτi) for τi ∈ Yµ̄1
and τi 6= 0, the same argument with the auxiliary

Bernoulli process used to obtain (56) can be adopted here, considering αo = 0 and

αm = 1/m for m sufficiently large, to obtain that

lim inf
n−→∞

σ̃p(kn, X
n) ≥ p

√
1− vp(Cτi), µ− a.s., (60)

for any sequence (kn)n≥1 such that kn/n −→ µ̄1(Cτi). For the other inequality, the

argument of the continuous case proposed to obtain (47) can be adopted here (with no

differences) to obtain that

lim sup
n−→∞

σ̃p(kn, X
n) ≤ p

√
1− vp(Cτi), µ− a.s. (61)

2.4) Sparse scenario: The sparse scenario, meaning that 0 ∈ Yµ̄1
, deserves a special445

treatment because this analysis offers insights about an important property of the func-

tion (fp,µ̄(r))r∈(0,1]. Let us consider the case that µ̄1({0}) = ρo > 0, then φ+
µ̄1

(0) =

limτ→0 φµ̄1
(τ) = µ̄1(C0) = 1 − ρo ∈ (0, 1) (see, the illustration in Fig. 4). On the other

hand, we have that vp({0}) = 0p·µ̄1({0})
||(xp)||L1(µ̄1)

= 0. Therefore, (φvp(τ)) is continuous at

τ = 0 (Fig. 4). From the fact that Yµ̄1 is at most a countable set, there is τ1 > 0 with450

φµ̄1(τ1) < 1 − ρo where φµ̄1(·) is continuous in (0, τ1) and, consequently, so is φvp(·) in

(0, τ1) (from Proposition 3 in Appendix 8). If we consider the range of φvp(·) in this

continuous domain, we have that
{
φvp(τ), τ ∈ (0, τ1)

}
= (v1, 1) where v1 = φvp(τ1) < 1.

Here, we adopt the same argument used in the continuous scenario to obtain the upper

bound in (47). Let us consider an arbitrary sequence (kn)n≥1 such that kn/n −→ 1− ρo
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τ1

v1 = φµ̄1
(τ1)

φ+
µ̄1

(0) = 1 − ρ0

φµ̄1
(0) = 1

ρ0

φµ̄1
(τ)

τ1

v1 = φvp (τ1)

v0 = φvp (0) = 1

φvp (τ)

Figure 4: Illustration of the tail distribution functions of µ̄1 and vp in the sparse case where µ̄1({0}) =

ρ0 > 0.

with n. By the continuity of φvp(τ) in (0, τ1) for any m sufficiently large such that

1− 1
m < v1, there is τm > 0 such that φvp(τm) = 1− 1

m . For any of these τm, it follows

that φµ̄1
(τm) < 1 − ρo.24 Then, we can consider the set of typical sequences defined

in (38) and (39), where if (xn)n≥1 ∈ Aτm ∩ Bτm then eventually in n it follows that

kn > nτm(xn) (from the fact that φµ̄1
(τm) < 1− ρo) and, consequently,

lim sup
n−→∞

σ̃p(kn, x
n) ≤ p

√
1/m, (62)

this last result from the definition of Bτm and the construction of τm (i.e., φvp(τm) =

1− 1
m ). Then if (xn)n≥1 ∈

⋂
m≥M (Aτm ∩Bτm), where M > 0 is set such that 1− 1

M < v1,

then

lim sup
n−→∞

σ̃p(kn, x
n) ≤ 0. (63)

Finally, from the (point-wise) ergodic result for AMS sources in (28), it follows that455

µ(
⋂
m≥M Aτm ∩ Bτm) = 1, meaning from (63) that limn−→∞ σ̃p(kn, X

n) = 0, µ-almost

surely.

The last observation to conclude this part is that if (k̃n) dominates (kn), in the

sense that k̃n ≥ kn eventually, then from definition σ̃p(k̃n, x
n) ≤ σ̃p(kn, x

n) for all xn.

Therefore from (63), for any r ∈ [1 − ρo, 1] and for any (kn) such that kn/n −→ r, it

24This from the fact that if φvp (τ) < φvp (τ̃) then φµ̄1 (τ) < φµ̄1 (τ̃) from the definition of vp.
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follows that

lim
n−→∞

σ̃p(kn, X
n) = 0, µ− a.s. (64)

Then we obtain in this case that ∀r ∈ [1− µ̄1({0}), 1]

fp,µ̄(r) = 0, (65)

while fp,µ̄(r) > 0 if r ∈ (0, 1− µ̄1({0})).

Remark 3. The result in (64) is consistent with the statement of Theorem 1, because if

r ∈ [1 − ρo, 1] then it can be written as r = µ̄1((0,∞)) + α · µ̄1({0}) for some α ∈ [0, 1]460

where fp,µ̄(r) = p
√

1− vp((0,∞))− α · vp({0}) = 0.

6.2.3. Main Argument — Case (xp)x∈R /∈ L1(µ̄1)

When (xp)x∈R /∈ L1(µ̄1), it follows that ∀τ ≥ 0,

lim
n−→∞

∑n−1
i=0 (1− 1Bτ (Xi)) · |Xi|p∑n−1

i=0 |Xi|p
= 0, µ− a.s.. (66)

this from the (point-wise) ergodic result in (28) and the fact that
∫

R |x|
p
dµ̄1(x) = ∞.

Then from (29) and (66) it follows in this case that

lim
n→∞

nτ (Xn)

n
= φµ̄1

(τ), µ− a.s., (67)

lim
n→∞

σ̃p(nτ (Xn), Xn) = 0, µ− a.s. (68)

for all τ ≥ 0. Again we can consider Aτ =
{

(xn)n≥0, limn→∞
nτ (xn)
n = φµ̄1

(τ)
}

and

Bτ =
{

(xn)n≥0, lim
n→∞

σ̃p(nτ (xn), xn) = 0
}
,

where µ(Aτ ∩ Bτ ) = 1 for all τ .

Let us fix r ∈ (0, 1] and (kn)n≥1 such that kn/n −→ r. We can consider r̄ < r, and

τo such that φµ̄1
(τo) = r̄. Then for any (xn) ∈ Aτo ∩ Bτo it follows that kn > nτo(x

n)465

eventually in n (from the fact that r > r̄ and the definition of Aτo), therefore eventually

σ̃p(nτ (xn), xn) ≥ σ̃p(kn, x
n). Finally from the definition of Bτo , limn→∞ σ̃p(kn, x

n) = 0.

The proof concludes noting that µ(Aτo ∩ Bτo) = 1.
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6.3. Theorem 2

Proof: First, we introduce formally the ergodic decomposition (ED) theorem:470

Theorem 3. [11, Th. 10.1] Let X = (Xn)n∈N be an AMS process characterized by

(RN,B(RN), µ). Then there is a measurable space given by (Λ,L) that parametrizes the

family of stationary and ergodic distribution, i.e., P̃ = {µλ, λ ∈ Λ}, and a measurable

function Ψ : (RN,B(RN))→ (Λ,L) such that:

i) Ψ is invariant with respect to T , i.e., Ψ(x) = Ψ(T (x)) for all x ∈ RN.475

ii) Using the stationary mean µ̄ of X, and its induced probability in (Λ,L), denoted

by WΨ, it follows that ∀F ∈ B(RN)

µ̄(F ) =

∫
µλ(F )∂WΨ(λ). (69)

iii) Finally25, for any L1(µ̄)-integrable and measurable function f : (RN,B(RN)) →

(R,B(R)),

lim
n→∞

1

n

n∑
i=1

f(T i(X)) = EZ∼µΨ(X)
(f(Z)) , µ− almost surely, (70)

where Z in (70) denotes a stationary and ergodic process in (RN,B(RN)) with process

distribution given by Ψ(X) ∈ Λ.

Let us first prove the almost sure sample-wise convergence in (22). For r ∈ (0, 1]) and

(kn)n≥1 such that kn/n→ r, we need to study the limit of the following random object

Yn = σ̃p(kn, X
n
1 ). As in the proof of Theorem 1, we consider the tail events

Bτ = (−∞, τ ] ∪ [τ,∞) and Cτ = (−∞, τ) ∪ (τ,∞) (71)

for τ ≥ 0. From Theorem 3 it follows that for any B ∈ B(R),

lim
n−→∞

1

n

n−1∑
i=0

1B(Xi) = EZ∼µΨ(X)
(1B(Z1)) = µ1,Ψ(X)(B), µ− a.s. (72)

25This result can be interpreted as a more sophisticated re-statement of the point-wise ergodic theorem

for AMS sources under the assumption of a standard space, which is the case for (RN,B(RN)). Details

and the interpretations of this result are presented in [11, Chs. 8 and 10].
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where Z = (Zi)i≥1 and µ1,Ψ(X) denotes the probability of Z1 (the 1D marginalization of

the process distribution µΨ(X)) in (R,B(R)). In addition, from Theorem 3 we have that

lim
n−→∞

∑n−1
i=0 1Bτ (Xi) · |Xi|p∑n−1

i=0 |Xi|p
= ξp(X, Bτ ), µ− a.s., (73)

where

ξp(X, Bτ ) ≡


∫
Bτ
|x|pdµ1,Ψ(X)(x)

||(xp)||L1(µ1,Ψ(X))
if (xp)x∈R ∈ L1(µ1,Ψ(X))

1 if (xp)x∈R /∈ L1(µ1,Ψ(X))
. (74)

From the results in (72) and (73), we can proceed with the same arguments used in the

proof of Theorem 1 to obtain that26

lim
n−→∞

σ̃p(kn, X
n
1 ) = fp,µΨ(X)

(r), µ− almost surely, (75)

where fp,µΨ(X)
(r) is the almost-sure asymptotic limit of the stationary and ergodic com-

ponent µΨ(X) ∈ P̃ stated in (19) and elaborated in the statement of Theorem 1. This

proves the first part of the result.480

For the second part, we consider again r ∈ (0, 1] and (kn)n≥1 such that kn/n → r.

Let us denote the almost sure limit in (75) by fp(X, r)
27, which is in general a random

variable from (RN,B(RN)) to (R,B(R)). For an arbitrary d ∈ [0, 1), we need to analyze

the asymtotic limit of µn(An,knd ). By additivity, we decompose this probability in two

terms:

µn(An,knd ) =µ
({
x̄ = (xi)i≥1 ∈ RN : σ̃p(kn, x

n
1 ) ≤ d, fp(x̄, r) ≤ d

})
+µ
({
x̄ ∈ RN : σ̃p(kn, x

n
1 ) ≤ d, fp(x̄, r) > d

})
, (76)

For the first term (from left to right) in the RHS of (76), we can consider the following

bounds

µ ({x̄ : fp(x̄, r) ≤ d}) ≥ µ ({x̄ : σ̃p(kn, x
n
1 ) ≤ d, fp(x̄, r) ≤ d}) ≥

µ ({x̄ : σ̃p(kn, x
n
1 ) ≤ fp,µ(x̄, r), fp(x̄, r) ≤ d}) . (77)

26We omit the argument here as they are redundant, following directly the structure presented in

Section 6.2.
27We omit the dependency on µ in the notation, because this limit (as a random variable of X) is

independent of µ.
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The lower and upper bounds in (77) has the same asymptotic limit, i.e.,

lim
n−→∞

µ ({x̄ : σ̃p(kn, x
n
1 ) ≤ fp(x̄, r), fp(x̄, r) ≤ d}) = lim

n−→∞
µ ({x̄ : fp(x̄, r) ≤ d}) . (78)

This can be shown by the following equality

µ ({x̄ : fp(x̄, r) ≤ d}) = µ ({x̄ : σ̃p(kn, x
n
1 ) ≤ fp(x̄, r), fp(x̄, r) ≤ d})

+ µ ({x̄ : σ̃p(kn, x
n
1 ) > fp(x̄, r), fp(x̄, r) ≤ d}) , (79)

and µ ({x̄ : σ̃p(kn, x
n
1 ) > fp(x̄, r), fp(x̄, r) ≤ d}) ≤ µ ({x̄ : σ̃p(kn, x

n
1 ) > fp(x̄, r)}), where

the almost sure convergence of σ̃p(kn, X
n
1 ) to fp(X, r) in (75) implies that

lim
n−→∞

µ ({x̄ : σ̃p(kn, x
n
1 ) > fp(x̄, r), fp(x̄, r) ≤ d}) = 0

obtaining the result in (78). Consequently, we have from (77) that

lim
n−→∞

µ
({
x̄ ∈ RN : σ̃p(kn, x

n
1 ) ≤ d, fp(x̄, r) ≤ d

})
= lim
n−→∞

µ
({
x̄ ∈ RN : fp(x̄, r) ≤ d

})
.

(80)

For the second term in the RHS of (76), it is simple to verify that

µ
({
x̄ ∈ RN : σ̃p(kn, x

n
1 ) ≤ d, fp(x̄, r) > d

})
≤ µ

({
x̄ ∈ RN : σ̃p(kn, x

n
1 ) < fp(x̄, r)

})
,

then the almost sure convergence in (75) implies that

lim
n−→∞

µ
({
x̄ ∈ RN : σ̃p(kn, x

n
1 ) ≤ d, fp(x̄, r) > d

})
= 0.

Putting this result in (76) and using (80), it follows that

lim
n−→∞

µn(An,knd ) = lim
n−→∞

µ
({
x̄ ∈ RN : fp(x̄, r) ≤ d

})
, (81)

which concludes the argument. Finally to obtain the specific statement presented in

(23), we first note that fp(x̄, r) = fp,µΨ(x̄)(r) for all x̄ ∈ RN, where (fp,µλ(r))r∈(0,1]

is the expression that has been fully characterized in Theorem 1 for any µλ ∈ P̃. In

addition, we can use Theorem 1 i) stating that when µλ is `p-compressible, meaning that

(xp)x∈R /∈ L1(µλ1), then fp,µλ(r) = 0 for all r ∈ (0, 1]. Therefore, all the stationary and485

ergodic components µΨ(x̄) that are `p-compressible satisfies that fp(x̄, r) = fp,µΨ(x̄)(r) ≤

d independent of the pair (r, d), which explains the first term in the expression presented

in (23).
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Appendix A. Proof of Lemma 8495

Proof: For the proof, the following properties of the tail functions (that defines Fµ̄1

in (35)) will be used:

Proposition 3. • Yvp = Yµ̄1
\{0}, meaning that for all τ > 0, (φµ̄1

(·)) is continuous

at τ if, and only if, (φvp(·)) is continuous at τ .

• ∀τ1 > τ2 > 0, φµ̄1
(τ1) = φµ̄1

(τ2) if, and only if, φvp(τ1) = φvp(τ2).500

The proof is presented in Appendix C.

Proof of i): Let us first show that (fµ̄1
(·)) is continuous in (0, 1]. It is sufficient

to prove continuity on the function f̃µ̄1(r)) ≡ 1 − (fµ̄1(r))p, which is induced by the

following more simple relationship:28

F̃µ̄1
≡
{

(φµ̄1
(τ), φvp(τ)), τ ∈ [0,∞)

}
(A.1)⋃

τn∈Yµ̄1

{(µ̄1(Cτn) + αµ̄1({−τn, τn}), vp(Cτn) + αvp({−τn, τn})), α ∈ [0, 1)} .

(A.2)

There are three distinct scenarios to consider:

• Let us first focus on the case where r ∈ R∗µ̄1
\ {µ̄1(Bτn), τn ∈ Yµ̄1} (see, Eq.(32)).

Under this assumption there exists τo ∈ [0,∞) \ Yµ̄1
(in the domain where φµ̄1

(·)

is continuous) where r = φµ̄1
(τo). From Proposition 3, φvp(·) is also continuos505

at τo where by construction in (A.1) f̃µ̄1
(r) = φvp(τo). Let us consider an ar-

bitrary ε > 0. From the continuity of φvp(·) at τo there exists δ > 0 such that{
φvp(τ), τ ∈ Bδ(τo)

}
⊂ Bε(f̃µ̄1

(r)).29 Without loss of generality, we can assume

28This from the continuity of the function g(x) = p
√

1− x in x ∈ [0, 1].
29Bε(x) ≡ (x− ε, x+ ε) ⊂ R denotes the open ball of radius ε > 0 centered at x ∈ R.
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that φvp(τo − δ) > f̃µ̄1(r) = φvp(τo) > φvp(τo + δ). Then from Proposition 3, it

follows that φµ̄1
(τo − δ) > r = φµ̄1

(τo) > φµ̄1
(τo + δ). Then, there exists δ̄ > 0510

such that Bδ̄(r) ⊂ {φµ̄1
(τ), τ ∈ Bδ(τo)}. Therefore from (A.1), we have that for

any r̄ ∈ Bδ̄(r) there exists τr̄ ∈ Bδ(τo) where r̄ = φµ̄1(τr̄) and, consequently,

f̃µ̄1(r̄) = φvp(τr̄) ∈ Bε(f̃µ1(r)), which concludes the argument in this case.

• Let us assume that r ∈
⋃
τn∈Yµ̄1

(µ̄1(Cτn), µ̄1(Bτn)) (see, Eq.(32)). Then there is

τn ∈ Yµ̄1
and a unique αo ∈ (0, 1) such that r = µ̄1(Cτn)+αo·µ̄1(Bτn\Cτn) and, con-515

sequently, f̃µ̄1
(r) = vp(Cτn) +αo · vp(Bτn \Cτn) from (A.2). Without loss of gener-

ality, let us consider ε > 0 small enough such that Bε(f̃µ̄1(r)) ⊂ (vp(Cτn), vp(Bτn)).

Then from the continuity of the affine function g(α) ≡ vp(Cτn) + α · vp(Bτn \

Cτn) in (0, 1), there exists δ > 0 (function of ε) such that {g(α), α ∈ Bδ(αo)} ⊂

Bε(f̃µ̄1
(r)). Therefore for any r̄ ∈ {µ̄1(Cτn) + α · µ̄1(Bτn), α ∈ (αo − δ, αo + δ)},520

f̃µ̄1(r̄) ∈ Bε(f̃µ̄1(r)) from the construction in (A.2). Finally fixing δ̄ = δ · µ̄1(Bτn \

Cτn), we have that
{
f̃µ̄1(r̄), r̄ ∈ Bδ̄(r)

}
⊂ Bε(f̃µ̄1(r)), which concludes the argu-

ment in this case.

• Finally, we need to consider the case where r ∈ {µ̄1(Cτn), τn ∈ Yµ̄1
}∪{µ̄1(Bτn), τn ∈ Yµ̄1

}.

The argument mixed the steps already presented in the two previous scenarios and525

for sake of space it is omitted here as no new technical elements are needed.

Proof of ii): Let us consider r2 > r1 and assume that both belong to R∗µ̄1
. This

means that there exist τ1 > τ2 ≥ 0 such that r1 = φµ̄1
(τ1) and r2 = φµ̄1

(τ1). Then

φvp(τ1) < φvp(τ2) from Proposition 3, which implies the result by the construction of

fµ̄1
(·) in (35). Another important scenario to cover is the case when r1 = µ̄1(Cτn) +530

α1µ̄1(Bτn \Cτn) and r2 = µ̄1(Cτn)+α2µ̄1(Bτn \Cτn) with α2 > α1, τn ∈ Yµ̄1 and τn > 0.

Then in this case vp(Cτn) + α2vp(Bτn \ Cτn) > vp(Cτn) + α1vp(Bτn \ Cτn) because from

Proposition 3 it follows that vp(Bτn \Cτn) > 0 if τn ∈ Yµ̄1
\ {0}. Again the result in this

case follows from (35). Mixing these two scenarios and using the monotonic property

of the tails functions (φµ̄1
(·), φvp(·)) proves the strict monotonic property of (fµ̄1

(·)) in535

(0, 1] if 0 /∈ Yµ̄1 and, the strict monotonic property of (fµ̄1(·)) in (0, 1] \ [1 − µ̄1({0}), 1]

if 0 ∈ Yµ̄1
. Then the remaining scenario to consider is r2 > r1 in [1 − µ̄1({0}), 1] when

0 ∈ Yµ̄1
(the sparse case). In this context, from definition vp({0}) = 0, which implies
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from (35) that fµ̄1(r2) = fµ̄1(r1) = 0. Finally, it is worth noting that this is the only

context (0 ∈ Yµ̄1
) and regime (r ∈ [1− µ̄1({0}), 1]) where fµ̄1

(·) is not strictly monotonic.540

Proof of iii): This part comes directly from the continuity of fµ̄1
(·) in (0, 1) and the

limiting values of the function (i.e., fµ̄1
(1) = 0 and limr−→0 fµ̄1

(r) = 1 from (35)).

Appendix B. Proof of Proposition 2

Proof: i) follows from the definition of φ(·) and ii) comes from the continuity of

a measure under a monotone sequence of events converging to a limit [14]. The left545

continuous property of φ(·) and the fact that φ+
m(τ) = φm(τ) −m({τ} ∪ {−τ}) (in iii))

follows mainly from the continuity of a measure [14].

Appendix C. Proof Proposition 3

Proof: The proof of these two points derives directly from the definition of the tail

function and the construction of vp from µ̄1. More precisely, both results derive from the550

observation that these two measures are almost mutually absolutely continuous in the

sense that for all B ∈ B(R) such that 0 /∈ B, µ̄1(B) = 0 if, and only if, vp(B) = 0. In

fact, for all B ∈ B(R) such that 0 /∈ B, vp(B) =
∫
B

|x|p
||(xp)||L1(µ̄1)

dµ̄1(x) and, conversely,

µ̄1(B) =
∫
B

||(xp)||L1(µ̄1)

|x|p dvp(x).
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