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Abstract

Motivated from the fact that universal source coding on countably infinite alphabets (∞-alphabets) is not feasible, this work
introduces the notion of “almost lossless source coding”. Analog to the weak variable-length source coding problem studied by
Han (IEEE TIT, 2000, 46, 1217-1226), almost lossless source coding aims at relaxing the lossless block-wise assumption to allow
an average per-letter distortion that vanishes asymptotically as the block-length tends to infinity. In this setup, we show on one
hand that Shannon entropy characterizes the minimum achievable rate (similarly to the case of finite alphabet sources) while on the
other that almost lossless universal source coding becomes feasible for the family of finite-entropy stationary memoryless sources
with ∞-alphabets. Furthermore, we study a stronger notion of almost lossless universality that demands uniform convergence
of the average per-letter distortion to zero, where we establish a necessary and sufficient condition for the so-called family of
“envelope distributions” to achieve it. Remarkably, this condition is the same necessary and sufficient condition needed for the
existence of a strongly minimax (lossless) universal source code for the family of envelope distributions. Finally, we show that
an almost lossless coding scheme offers faster rate of convergence for the (minimax) redundancy compared to the well-known
information radius developed for the lossless case at the expense of tolerating a non-zero distortion that vanishes to zero as the
block-length grows. This shows that even when lossless universality is feasible, an almost lossless scheme can offer different
regimes on the rates of convergence of the (worst case) redundancy versus the (worst case) distortion.

Index Terms

Universal source coding, countably infinite alphabets (∞-alphabets), weak source coding, envelope distributions, information
radius (i-radius), metric entropy analysis.

I. INTRODUCTION

The problem of Universal Source Coding (USC) has a long history on information theory [3]–[7]. This topic started with the
seminal work of Davisson [6] that formalizes the variable-length lossless coding and introduces relevant information quantities
(mutual information and channel capacity [4]). In lossless variable-length source coding, it is well-known that if we know
the statistics of a source (memoryless or stationary and ergodic) the Shannon entropy (or Shannon entropy rate) provides the
minimum achievable rate [4]. However, when the statistics of the source is not known but it belongs to family of distributions
Λ, then the problem reduces to characterize the worst-case expected overhead (or worse-case redundancy) that a pair of encoder
and decoder experiences due to the lack of knowledge about true distribution governing the source samples to be encoded [3],
[8].

A seminal information-theoretic result states that the least worst-case overhead (or minimax redundancy of Λ) is fully
characterized by the information radius of Λ [3]. The information radius (i-radius) has been richly studied by the community
and there are numerous contributions [9]–[13], including applications to universal prediction of individual sequences [14]. In
particular, it is well-known that the i-radius growths sub-linearly for the family of finite alphabet stationary and memoryless
sources [3], which implies the existence of an universal source code that achieves Shannon entropy for every distribution in
this family provided that the block length tends to infinity. What is intriguing in this positive result obtained for finite alphabet
memoryless sources is that it does not longer extend to the case of stationary and memoryless sources on countably infinite
alphabets (∞-alphabets), as was clearly shown in [5], [7], [9]. From an information complexity perspective, this infeasibility
result implies that the i-radius of this family is unbounded for any finite block-length and, consequently, lossless universal
source coding for ∞-alphabet stationary and memoryless sources is an intractable problem. In this regard, the proof presented
by Györfi et al. [5, Theorem 1] is constructed over a connection between variable-length prefix-free codes and distribution
estimators, and the fact that the redundancy of a given code upper bounds the expected divergence between the true distribution
and the induced (through the code) estimate of the distribution. Then, the existence of an universal source code implies the
existence of an universal estimator in the sense of expected information divergence [15].1 The impossibility of achieving this
learning objective for the family of finite entropy memoryless sources [5, Theorem 2] motives the main question addressed in
this work that is, the study of a “weak notion” of universal variable-length source coding.

The material in this paper was partially published in The IEEE 2016 [1] and IEEE 2017 [2] International Symposium on Information Theory (ISIT).
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In this framework, we propose to address the problem of universal source coding for ∞-alphabet stationary and memoryless
sources by studying a weaker (lossy) notion of coding instead of the classical lossless definition [3], [4]. This notion borrows
ideas from the seminal work by Han [16] that allows reconstruction errors but assuming known statistic. In this paper, we
investigate the idea of relaxing the lossless block-wise assumption with the goal that the corresponding weak universal source
coding formulation will be reduced to a learning criterion that becomes feasible for the whole family finite entropy stationary
and memoryless sources on countably infinite alphabets. In particular, we move from lossless coding to an asymptotic vanishing
distortion fidelity criterion based on the Hamming distance as a fidelity metric.

A. Contributions

Assuming that the distribution of the source is known, we first introduce the problem of “almost lossless source coding”
for memoryless sources defined on countably infinite alphabets. Theorem 3 shows that Shannon entropy characterizes the
minimum achievable rate for this problem. The proof of this theorem adopts a result from Ho et al. [17] that provides
a closed-form expression for the rate-distortion function Rµ(d) on ∞-alphabets. From this characterization, we show that
limd→0Rµ(d) = H(µ) which is essential to prove this result2.

Then, we address the problem of almost lossless universal source coding. The main difficulty arises in finding a lossy coding
scheme that achieves asymptotically zero distortion, i.e., point-wise over the family, while guaranteeing that the worst-case
average redundancy –w.r.t. the minimum achievable rate– vanishes with the block-length [3]. The proof of existence of an
universal code with the desired property relies on a two-stage coding scheme that first quantizes (symbol-by-symbol) the
∞-alphabet and then applies a lossless variable-length code over the resulting quantized symbols. Our main result, stated
in Theorem 4, shows that almost lossless universal source coding is feasible for the family of finite entropy stationary and
memoryless sources.

We further study the possibility of obtaining rates of convergence for the worst-case distortion and the worst-case redundancy.
To this end, we restrict our analysis to the family of stationary and memoryless sources with 1D-densities dominated by an
envelope function f , which was previously studied in [9], [10], [20], [21]. Theorem 5 presents a necessary and sufficient
condition on f to achieve an uniform convergence (over the family) of the distortion to zero and, simultaneously, a vanishing
worst-case average redundancy. Remarkably, this condition (f being a summable function) is the same necessary and sufficient
condition needed for the existence of a strongly minimax (lossless) universal source code [9, Theorems 3 and 4].

Finally, we provide an analysis of the potential benefit of an almost lossless two-stage coding scheme by exploring the
family of envelope distributions that admits strong minimax universality in lossless source coding [8], [9]. In this context,
Theorem 6 shows that we can have an almost lossless approach that offers a non-trivial reduction to the rate of convergence of
the worst-case redundancy, with respect to the well-known i-radius developed for the lossless case, at the expense of tolerating
a non-zero distortion that vanishes with the blocklength. This result provides evidence that even in the case where lossless
universality is feasible, an almost lossless scheme can reduce the rate of the worst-case redundancy and consequently, it offers
ways of achieving different regimes for the rate of convergence of the redundancy versus the distortion. The proof of this
result uses advanced tools by Haussler and Opper [11] to relate the minimax redundancy of a family of distributions with its
metric entropy with respect to the Hellinger distance. Indeed, this metric entropy approach has shown to be instrumental to
derive tight bounds on the i-radius for summable envelope distributions in [10]. We extended this metric entropy approach to
our almost lossless coding setting with a two-stage coding scheme to characterize the precise regime in which we can achieve
gains in the rate of convergence of the redundancy.

B. Organization of the Paper

The rest of the paper is organized as follows. Section II introduces some definitions and preliminary results. Section III
introduces our main weak source coding problem and shows that Shannon entropy is the minimum achievable rate provided that
the statistics of the source is known. Section IV presents the problem of almost lossless universal source coding and proves its
feasibility for the family of finite entropy memoryless distributions on∞-alphabets. Section V elaborates a result for a stronger
notion of almost lossless universality, and Section VI studies the gains in the rate of convergence of the minimax-redundancy
that can be obtained with an almost lossless scheme for families of distributions that admit lossless USC. Finally, Section VII
concludes with a summary of the work. The proofs of the main results of this paper are presented in Section VIII, while some
supporting results are relegated to the Appendix section.

C. Basic Notation

The following notations and conventions are used throughout this article: (xn)n will denote an infinite dimensional sequence
in RN; (xn)n � (yn)n or, alternatively, (xn)n being o(yn), means that limn→∞

xn
yn

= 0; (xn)n being o(1) means that
limn→∞ xn = 0; (xn)n ≤ (yn)n means that xn ≤ yn for all n ≥ 1; (xn)n ≤ (yn)n eventually in n means that there exists

2This result is well-known for finite alphabets, however the extension on countably infinite alphabets is not straightforward due to the discontinuity of the
entropy [18], [19].
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N > 1 such that xn ≤ yn for all n ≥ N ; (xn)n ∼ (yn)n means that limn→∞
xn
yn

= 1; X will denote the countably infinite
alphabet and P(X ) the collection of probability measures in X ; for any function f : X −→ R, f is said to be summable
(denoted by f ∈ `1(X )) if

∑
n∈X |f(x)| <∞; and for µ, v ∈ P(X ), µ� v means that if v(B) = 0 then µ(B) = 0 for any

B ⊂ X .

II. PRELIMINARIES

This section introduces some useful concepts, definitions and results that will be needed across the paper. Let X = {Xi}∞i=1

be a stationary and memoryless process (or i.i.d. source) with values in a countably infinite alphabet (∞-alphabets) X equipped
with a probability measure µ defined on the measurable space (X ,B(X))3. Let Xn = (X1, . . . , Xn) denote a finite block of
length n of the process following the product measure µn on (Xn,B(Xn))4. Let us denote by P(X ) the family of probability
measures in (X ,B(X)), where for every µ ∈ P(X ), we understand fµ(x) := dµ

dλ (x) = µ({x}) to be a short-hand for its
probability mass function (pmf). Let supp(f) = {x ∈ X : |f(x)| > 0} and let PH(X ) := {µ : H(µ) <∞} ⊂ P(X ) denote
the collection of finite Shannon entropy probabilities [22] where

H(µ) = −
∑
x∈X

fµ(x) log fµ(x), (1)

with log function on base 2.
Given an i.i.d. source X = {Xi}∞i=1 with distribution µ ∈ P(X ), let us consider a (variable length) lossless code fn of length

n as a prefix-free mapping from Xn to finite sequences of symbols in {0, 1} [4]. It is well-known that EXn {L(fn(Xn))} ≥
H(µn) [4], where L(·) indicates the functional that returns the length of binary sequences in {0, 1}? := ∪k≥1 {0, 1}k. Then,
the average length (in bits) used to encode Xn with fn can be measured relative to H(µn), which motivates the introduction of
the average redundancy (or redundancy) of fn by the expression: EXn {L(fn(Xn))}−H(µn). When µ is known, the Huffman
code uses that information to offer an optimal prefix-free mapping (minimizing the average code-length) whose redundancy is
upper bound by 1 [4].

A. Strong Minimax Universality, Information Radius and Envelope Families

In universal source coding (USC), we need to encode a stationary memoryless source X with an unknown probability µ that
belongs to a class of models Λ ⊂ P(X ). In this context, a natural performance for a prefix-free encoder fn : Xn → {0, 1}?
is the worse-case (over the family Λ) redundancy expressed by:

R(fn, µ
n) := sup

µn∈Λn
(EXn∼µn {L(fn(Xn))} −H(µn)) ,

where Λn := {µn, µ ∈ Λ} ⊂ P(Xn) is a short-hand for the family of n-fold (product) distributions induced by Λ. This
worse-case performance indicator motivates the adoption of the minimax design principle: minfn R(fn, µ

n) frequently used
in USC [3], where the optimization is carried over the family of prefix-free codes. Importantly, there is a well-documented
correspondence between prefix-free codes for Xn and probabilities in P(Xn) [4]. In fact, the Kraft-MacMillan inequality
defines a probability in P(Xn) from a prefix-free code of length n [4], and conversely arithmetic coding provides a prefix-free
code for Xn from a probability v ∈ P(Xn), where the length of this code (in bits) is d− log v(xn)e+ 1 for any xn ∈ Xn [4],
[23]. Then the minimax redundancy problem for USC reduces to the solution of the i-radius problem [3]5:

R+(Λn) := inf
v∈P(Xn)

sup
µn∈Λn

D(µn|v) (2)

and
D(µn|v) =

∑
xn∈Xn

fµn(xn) log
fµn(xn)

fv(xn)
(3)

is the divergence of µn with respect to v [3], [4], [24]. Again using this connection between codes and distributions, a class
Λ ⊂ P(X ) of i.i.d. sources will be said to be weakly universal if there is a sequence of probabilities (vn)n (where vn ∈ P(Xn)
for all n) such that supµ∈Λ limn→∞

1
nD(µn|vn) = 0, and it will be strongly universal (or strongly minimax universal) if

limn→∞ supµ∈Λ
1
nD(µn|vn) = 0. For the last stringent USC objective, the minimax redundancy sequence (R+(Λn))n of

Λ in (2) determines if the family is strongly minimax universal [3], [8]. For ∞-alphabets i.i.d. sources, it is known that
R+(P(X)n) =∞ and, furthermore, weak minimax universality is not feasible [5], [7], [9]. This motivates the study of strong
minimax universality over sub-collections of distributions whose 1D densities are dominated by an envelop function [9], [10],
[20]:

3B(X ) denotes the power set of X .
4The product measure satisfies the memoryless condition for all B1 × · · · × Bn ∈ Xn then µn(B1 × · · · × Bn) = µ(B1) · · ·µ(Bn).
5In fact, it follows that R+(Λn) + 2 ≥ minfn R(fn, µn) ≥ R+(Λn) [4].
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Definition 1: Given a non-negative function f : X −→ R+, the envelope family indexed by f is given by:

Λf :=
{
µ ∈ P(X ) : fµ(x) ≤ f(x), for x ∈ X

}
. (4)

The next result by Boucheron et al. [9] establishes a necessary and sufficient condition to make Λf strongly minimax universal:
Theorem 1: [9, Ths. 3 and 4] Let us consider f : X → R+, with X an ∞-alphabet, and the family of i.i.d. envelope

distributions
{

Λnf , n ≥ 1
}

. It follows that:

i) If f is summable, i.e., f ∈ `1(X ), then R+(Λnf ) <∞ for all n ≥ 1, and furthermore (R+(Λnf ))n is o(n).
ii) Otherwise, R+(Λnf ) =∞ for all n ≥ 1.

Therefore for any envelope family in an ∞-alphabet, either it is strongly minimax universal (i.e.,(R+(Λnf ))n is o(n)) or its
i-radius in (2) is unbounded for any finite block-length. The last unbounded scenario means that for any n and a ny prefix-free
code fn there is a distribution µ in the family where the average redundancy of fn (with respect to the entropy H(µn)) is
unbounded. Furthermore for a summable envelope function f , a series of relevant results stipulate the way (R+(Λnf )/n)n tends
to zero function of specific tail attributes of f [9], [10], [20]. We select a result here that will be important for our exposition,
for which some definitions are needed:

Definition 2: (Bontemps et al. [10]) For a non-negative envelope function f ∈ `1(X ) with |supp(f)| =∞, we can determine

lf := max

k :
∑
j≥k

f(j) ≥ 1


and the associated envelope probability µf ∈ Λf by:

µf ({k}) :=


0, for k < lf
f(k), for k > lf
1− ∑

j>lf

f(j), for k = lf .
(5)

Definition 3: (Bontemps et al. [10]) If we denote by Ff (u) := µf ({1, . . . , u}) the envelope distribution and by F̄f (u) :=
1− Ff (u) the tail function of f (for all u ≥ 1), we can define the quantile of order 1

n of µf as the solutions of [10]:

u∗f (n) := min

{
u ≥ 1 : F̄f (u) <

1

n

}
for all n ≥ 1. (6)

Theorem 2: [9, Th. 4]& [10, Th. 2, Prop. 5] Let us consider the envelope family
{

Λnf , n ≥ 1
}

in Def. 1 with f ∈ `1(X ).
Then there is a sequence (ξn)n being o(1) such that

(1 + ξn)
(u∗f (n)− 1)

4
log n ≤ R+(Λnf ) ≤ 2 + log e+

(u∗f (n)− 1)

2
log n

holds eventually with n.
It has been shown that when f ∈ `1(X ) then (u∗f (n) log n)n is o(n) [10], therefore Theorem 2 is consistent with Theorem
1. Importantly, (u∗f (n))n captures the complexity of the envelop family by determining the worse-case redundancy (and its
velocity of convergence to zero with n) that an optimal universal code can achieve in compressing (losslessly) a stationary
and memoryless source in this family.

III. ALMOST LOSSLESS SOURCE CODING

We now introduce the notion of a lossy variable-length coding of n source symbols, which consists of a pair (fn, gn) where
fn : Xn −→ {0, 1}? is a prefix free variable-length code (encoder) [4] and gn : {0, 1}? −→ Xn is the inverse mapping
from bits to source symbols (decoder). Inspired by the weak coding setting introduced by Han [16], the possibility that
{xn : gn(fn(xn)) 6= xn} 6= ∅ is allowed. In order to quantify the loss induced by this encoding process, a per letter distortion
measure characterization ρ : X × X :−→ R+ is considered [25], [26], where for xn, yn ∈ Xn the distortion is given by

ρn(xn, yn) :=
1

n

n∑
i=1

ρ(xi, yi). (7)

Given an information source X = {Xi}ni=1, the average distortion induced by the pair (fn, gn) is

d(fn, gn, µ
n) := EXn∼µn

{
ρn
(
Xn, gn(fn(Xn))

)}
. (8)

For the rest of the paper, we will focus on the special case where ρ(x, y) = 1{x 6=y}. Then, ρn(xn, yn) is the normalized
Hamming distance between the sequences (xn, yn). On the other hand, the rate of the pair (fn, gn) (in bits per sample) is

r(fn, µ
n) :=

1

n
EXn∼µn {L(fn(Xn))} . (9)
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At this stage, we can introduce the almost-lossless source coding problem and with this, the standard notion of minimum
achievable rate.

Definition 4 (Achievability): Given an information source X = {Xi}∞i=1, we say that a rate R > 0 is achievable for
almost-losslessly encoding X, i.e., with zero asymptotic distortion, if there exists a sequence of encoder and decoder mappings
{(fn, gn)}n≥1 satisfying:

lim sup
n−→∞

r(fn, µ
n) ≤ R, (10)

lim
n−→∞

d(fn, gn, µ
n) = 0. (11)

The minimum achievable rate is then defined as:

Ral(X) := min {R : R is achievable for X} . (12)
Let Ral(µ) denotes the minimum achievable rate of a stationary and memoryless source driven by µ ∈ P(X ). The next

theorem characterizes Ral(µ) provided that the source statistics is known.
Theorem 3 (Known statistics): Given a stationary and memoryless source on a ∞-alphabet driven by the probability

measure µ ∈ PH(X ), it follows that Ral(µ) = H(µ).
The proof is presented in Section VIII-A.
As it is expected, Shannon entropy characterizes the minimum achievable rate for the almost lossless source coding problem

formulated in Definition 4. In the proof of Theorem 3, we adopt a result from Ho et al. [17] that provides a closed-form
expression for the rate-distortion function Rµ(d) of µ on ∞-alphabet through a tight upper bound on the conditional entropy
for a given minimal error probability [17, Theorem 1]. From this characterization, we show that limd→0Rµ(d) = H(µ), which
is essential to show the result6.

A. A Two-Stage Source Coding Scheme

In this section, we consider a two-stage source coding scheme that first applies a lossy (symbol-wise) reduction of the alphabet,
and second a variable-length lossless source code over the restricted alphabet. Let us define the finite set Γk := {1, . . . , k}. We
say that a two-stage lossy code of block-length n and size k is the composition of: a lossy mapping of the alphabet, represented
by a pair of functions (φn, ψn), where φn : X −→ Γk and ψn : Γk −→ X , and a fixed to variable-length prefix-free pair of
lossless encoder-decoder (Cn,Dn), where Cn : Γnk −→ {0, 1}

? and Dn : {0, 1}? −→ Γnk .
Given a source X = {Xi}∞i=1 and an (n, kn)-lossy source encode (φn, ψn, Cn,Dn)7, the lossy encoding of X induced by

(φn, ψn, Cn) is a two-stage process where first a quantization of size kn over Xn is made (letter-by-letter) to generate a finite
alphabet random sequence Y n := (φn(X1), . . . , φn(Xn)) and then, a variable-length coding is applied to produce Cn(Y n).
Associated to the pair (φn, ψn), there is an induced partition of X given by:

πn :=
{
An,i := φ−1

n ({i}) | i ∈ Γkn
}
⊂ B(X ), (13)

and a collection of prototypes8
{
yn,i := ψn(i) ∈ An,i | i ∈ Γkn

}
⊂ X . The resulting distortion incurred by this code is given

by
d(φn, ψn, µ

n) := EXn∼µn
{
ρn
(
Xn,Ψn(Φn(Xn))

)}
, (14)

where X̂n = Ψn(Φn(Xn)) is a short-hand to denote
(
ψn(φn(X1)), . . . , ψn(φn(Xn))

)
. On the other hand, the coding rate is:

r(φn, Cn, µn) :=
1

n
EXn∼µn

{
L
(
Cn(Φn(Xn))

)}
, (15)

with Φn(Xn) denoting (φn(X1), . . . , φn(Xn)). An illustration of this two-stage process is presented in Figure 1.
At this point, it is worth mentioning some basic properties on the partitions induced by (φn, ψn, Cn) on X .
Definition 5: A sequence of partitions {πn}n≥1 of X is said to be asymptotically sufficient with respect to µ ∈ P(X ), if

for all x ∈ supp(µ)
lim
n→∞

πn(x) = {x} , µ-almost everywhere, (16)

where πn(x) ⊂ X denotes the cell in π that contains x and the almost-sure limit with respect to µ stated in (16) refers to the
condition:

µ

(
lim sup
n→∞

πn(x) \ {x}
)

= 0,

which is equivalent to lim
n→∞

µ
(⋃

k≥n πk(x) \ {x}
)

= 0.

6Theorem 3 is well-known for finite alphabets stationary memoryless sources, however its extension to countably infinite alphabets is not straightforward
due to the discontinuity of the entropy. The interested reader may be refer to [18], [19], [27] for further details.

7For brevity, the decoding function Dn : {0, 1}? −→ Γnk will be omitted and considered implicit in the rest of the exposition.
8Without loss of generality, we assume that yn,i ∈ An,i.
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Xn = (X1, ..., Xn) Φn Y n = (φn(X1), ..., φn(Xn)) Cn
0110011 = Cn(Y n)

Dn Ψn

(lossless mapping)

Y n = (Y1, ..., Yn) X̂n = (ψn(Y1), ..., ψn(Yn)) ∈ Xn

(lossy mapping)

0110011

Encoding Process

Decoding Process

first stage second stage

second stage first stage

Fig. 1: Illustration of the two-stage lossy coding scheme (φn, ψn, Cn,Dn) presented in Section III-A.

Consider now almost lossless coding for which we can state the following.
Lemma 1: Let X be a stationary and memoryless source driven by µ. A necessary and sufficient condition for {(φn, ψn, Cn) : n ≥ 1}

to have that lim
n→∞

d(φn, ψn, µ
n) = 0 is that {πn}n≥1 in (13) is asymptotically sufficient for µ.

The proof of Lemma 1 is presented in Appendix I-A.
Studying the minimum achievable rate for zero-distortion coding requires the following definition.
Definition 6: For µ ∈ PH(X ) and a partition π of X , the entropy of µ restricted to the sigma-field induced by π, which

is denoted by σ(π), is given by
Hσ(π)(µ) := −

∑
A∈π

µ(A) logµ(A). (17)

A basic inequality [3], [4] shows that if σ(π) ⊂ σ(π̄), then Hσ(π)(µ) ≤ Hσ(π̄)(µ) for every µ. In particular, Hσ(π)(µ) ≤ H(µ),
where it is simple to show that H(µ) = supπ∈Π(X )Hσ(π)(µ) with Π(X ) representing the collection of finite partitions of X .
Furthermore, it is possible to state the following result.

Lemma 2: If a sequence of partitions {πn}n≥1 of X is asymptotically sufficient with respect to µ (Def. 5), then

lim
n−→∞

Hσ(πn)(µ) = H(µ). (18)
The proof of this result is presented in Appendix I-B.
This implies that if a two-stage scheme {(φn, ψn, Cn) : n ≥ 1} achieves zero distortion, then{

πn =
{
φ−1
n ({i}) : i ∈ Γk

}
: n ≥ 1

}
(19)

is asymptotically sufficient for µ (cf. Lemma 1). From the well-known result in lossless variable-length source coding [4], we
have that:

r(φn, Cn, µn) ≥ 1

n
H (Φn(Xn))

= Hσ(πn)(µ) (20)

and consequently, Lemma 2 implies that lim inf
n→∞

r(φn, Cn, µn) ≥ H(µ). Hence, letting R̄al(µ) to be the minimum achievable

rate w.r.t. the family of two-stage lossy schemes in Definition 4, we obtain that R̄al(µ) ≥ Ral(µ) = H(µ).
The next result shows that there is no additional overhead (in terms of bits per sample), if we restrict the problem to the

family of two-stage lossy schemes.
Proposition 1: For a stationary and memoryless source X = {Xi}∞i=1 driven by µ ∈ PH(X ),

R̄al(µ) = Ral(µ) = H(µ).
The proof is presented in Appendix I-C.
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IV. UNIVERSAL ALMOST LOSSLESS SOURCE CODING

Consider a stationary and memoryless source {Xn}∞n=1 on a∞-alphabet with unknown distribution but belonging to a family
Λ ⊂ P(X ). The main question to address here is if there exists a lossy coding scheme whose rate achieves the minimum
feasible rate in Theorem 3, for every possible distribution in Λ, while the distortion goes to zero as the block-length tends to
infinity as defined below.

Definition 7: A family of distribution Λ is said to admit an almost lossless USC scheme, if there is a lossy source code
{(fn, gn)}n≥1 simultaneously satisfying:

sup
µ∈Λ

lim
n→∞

d(fn, gn, µ
n) = 0, (21)

and
lim
n→∞

sup
µ∈Λ

(
r(fn, µ

n)−H(µ)
)

= 0. (22)

An almost lossless universal code provides a point-wise convergence of the distortion to zero for every µ ∈ Λ while constraining
the worst-case expected redundancy to vanish as the block length tends to infinity. It is obvious from Definition 7 that if Λ
admits a classical lossless universal source code [6], [7], i.e., the worst-case average redundancy vanishes with zero distortion
for every finite n, then it admits an almost lossless USC. The next result shows that there is a richer family of distributions
that admits an almost lossless USC scheme:

Theorem 4 (Feasibility): The family PH(X ) admits an almost lossless USC scheme.
The proof is presented in Section VIII-B.
Remarkably, Theorem 4 shows that a weak notion of universality allows to code the complete collection of finite entropy

stationary memoryless sources defined on ∞-alphabets. Since the same result for lossless source coding is not possible [5],
an interpretation of Theorem 4 is that a non-zero distortion (for any finite block-length) is strictly needed to make the average
redundancy of an universal coding scheme vanishing with the block-length. To obtain this result, the two-stage approach
presented in Section III-A was considered.

If we restrict the family of two-stage schemes to have an exhaustive first-stage mapping, i.e., πn(x) = {x} for all x ∈ X
and n ≥ 1, then we reduce the approach to the lossless setting (i.e., zero distortion for every finite block-length). In this case,
if we apply the condition to obtain Theorem 4 (stated in Lemma 4 in Section VIII-C), this reduces to verify that the i-radius
of the family grows sub-linearly with the block-length (more details presented in Sections VIII-B and VIII-C), which is the
condition known for a family of distributions to have a nontrivial minimax redundancy rate [3], [5]–[7], [9].

A. Entropy Estimation with an Almost Lossless Universal Code: A Side Comment

In the lossless case, the existence of a weak minimax source coding scheme
{
fn : Xn → {0, 1}∗ , n ≥ 1

}
for a family

of distribution Λ implies that supµ∈Λ limn→∞
(
r(fn, µ

n) − H(µ)
)

= 0 [3]. Consequently, the average length of the code
r(fn, µ

n) = E {L(Cn(Φn(Xn)))} /n is a weak consistent estimator of the entropy distribution-free in µ ∈ Λ [28]. For the
family of finite entropy stationary and memoryless sources, we have that it is not feasible to have a weak minimax USC
scheme in ∞-alphabets. In fact, [5, Theorem 2] says that for every code fn and n ≥ 1, there exists µ ∈ PH(X ) such that
r(fn, µ

n) = ∞. In other words, there is no lossless variable-length source coding scheme that offers a weakly consistent
estimator of the entropy using its average block-length (per letter). In contrast, Theorem 4 shows that there is an almost
lossless USC scheme

{
(φn, ψn, Cn,Dn) : n ≥ 1

}
with an average length that offers a distribution-free weakly consistent

estimation of the entropy in PH(X ). In fact from the proof of Lemma 4 (Sec.VIII-C), we have that

lim
n→∞

sup
µ∈PH(X )

(
r(φn, Cn, µn)−Hσ(πn)(µ)

)
= 0,

and from the fact that {πn : n ≥ 1} is asymptotically sufficient for PH(X ) (Definition 12 in Section VIII-B), it follows that:
limn→∞ r(φn, Cn, µn) = H(µ), for all µ ∈ PH(X ). Then, by relaxing the lossless block-wise assumption (introducing a non-
zero distortion), we control the worse-case redundancy, which is bounded by the i-radius of PH(X ) restricted to a sub-sigma
field (see (38)). This flexibility enables the capacity to balance two sources of errors: r(φn, Cn, µn) −Hσ(πn)(µ) (a kind of
estimation error) and H(µ) −Hσ(πn)(µ) (an approximation error), that at the end offers an distribution-free estimate of the
entropy (point-wise) using the average length of the code.

V. UNIFORM CONVERGENCE OF THE DISTORTION

In this section, we further focus on a stronger notion of universal weak source coding. We study whether is possible to
achieve an uniform convergence of the distortion to zero (over the entire family Λ), instead of the point-wise convergence
stated in Definition 7. To this end, we restrict the analysis to the rich family of envelope distributions introduced in Section
II-A. We can state the following dichotomy:

Theorem 5 (Uniform convergence): Let us consider the family of envelope distributions Λf .
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i) If f ∈ `1(X ), then there is a two-stage coding scheme {(φn, ψn, Cn) : n ≥ 1} with |πn| <∞ (finite size) such that

lim
n→∞

sup
µ∈Λf

d(φn, ψn, µ
n) = 0, and

lim
n→∞

sup
µ∈Λf

(
r(φn, Cn, µn)−H(µ)

)
= 0.

ii) Otherwise, i.e., f /∈ `1(X ), for any two-stage code (φn, ψn, Cn) of length n with |πn| <∞ it follows that

sup
µ∈Λf

d(φn, ψn, µ
n) = 1,

while if |πn| =∞, then
sup
µ∈Λf

(
r(φn, Cn, µn)−H(µ)

)
=∞.

More generally, for a lossy code (fn, gn) of length n, provided that

sup
µ∈Λf

d(fn, gn, µ
n) < 1,

then
sup
µ∈Λf

(
r(fn, µ

n)−H(µ)
)

=∞.
The proof is presented in Section VIII-D.
Theorem 5 states that if the envelope function is summable, there is a two-stage coding scheme of finite size that offers

a uniform convergence of the distortion to zero (over Λf ), while ensuring that the worst-case average redundancy (over Λf )
vanishes with the block-length. On the negative side, for all stationary memoryless sources indexed by a non-summable envelope
function, it is not possible to achieve an uniform convergence of the distortion to zero with a finite size two-stage coding rule.
An infinite size rule is indeed needed, i.e., |πn| = ∞, eventually with n, that on the down-side it has an unbounded i-radius
(details presented in Lemmas 5 and 1 at Section VIII-D). Importantly, this impossibility result remains when enriching the
analysis with the adoption of general lossy coding rules (details in Sec. VIII-D.3).

Finally, it worths noting that the family Λf with f ∈ `1(X ) has a finite regret and redundancy in the context of lossless
universal source coding [9, Ths. 3 and 4]. Furthermore, summability is the necessary and sufficient condition on f that makes
this collection strongly minimax universal in lossless source coding [9]. Then, based on this strong almost lossless source coding
criterion (with a uniform convergence to zero of the distortion and the redundancy) it is not possible to code (universally) a
richer family of distributions when restricting the analysis to envelope families.

VI. REDUNDANCY GAINS FOR SUMMABLE ENVELOPE FAMILIES

Theorem 5 states that we can achieve a uniform convergence of the distortion to zero while the worst-case redundancy
vanishes with a two-stage lossy scheme if, and only if, Λf has a summable envelope function. On the lossless variable-length
source coding side, if f ∈ `1(X ) we know from Theorem 1 that the i-radius of the family

R+(Λnf ) = min
vn∈P(Xn)

sup
µn∈Λnf

D(µn|vn),

is o(n) [9, Ths. 3 and 4], which is equivalent to state that Λf is strongly minimax universal [3]. Therefore, under the assumption
that f ∈ `1(X ), the lossy approach with asymptotic vanishing distortion may appear to not be useful if no gains are observed in
the way the worst-case redundancy approaches zero in (22), with respect to the normalized i-radius sequence (R+(Λnf )/n)n≥1

that governs minimax redundancy in the lossless case [3], [9].
This section explores the feasibility of obtaining gains in terms of the minimax redundancy of a two-stage lossy approach

tends to zero, when compared to the minimax redundancy (of the lossless scenario) for Λf when f ∈ `1(X ). We focus on the
finite size tail-based partition scheme used to prove Theorem 4 and the achievability part of Theorem 5.

A. Preliminaries

Let us consider a positive and non-decreasing sequence of integers (kn)n and the collection of tail partitions induced by:

π̃kn :=
{
{1} , · · · , {kn − 1} ,Γckn−1

}
, ∀n ≥ 1, (23)

where Γk = {1, . . . , k}. Note that π̃kn resolves all the elements of Γkn−1 = {1, . . . , kn − 1} and consequently, there is a pair
(φ̃n, ψ̃n) associated with π̃kn such that ∀µ ∈ Λf ,

d(φ̃n, ψ̃n, µ
n) ≤ µ(Γckn−1) ≤

∑
x≥kn

f(x). (24)
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Consequently, it follows that
sup
µ∈Λf

d(φ̃n, ψ̃n, µ
n) ≤

∑
x≥kn

f(x) <∞. (25)

It is then easy to verify that (1/kn)n being o(1) is the necessary and sufficient condition for the tail-based scheme to have the
uniform convergence (over Λf ) of the distortion to zero.

Concerning the worst-case minimax redundancy of the two-stage scheme induced by {π̃kn} in (22), we can consider a lossy
mapping (φ̃n, ψ̃n) consistent with π̃kn (first-stage), where it is clear that the entropy of Y n = (φ̃n(X1), .., φ̃n(Xn)), which
is H(Φ̃n(Xn)) = nHσ(π̃kn )(µ) ≤ nH(µ), is a lower bound for the performance of any prefix-free code acting on Y n. Then
given the first-stage (φ̃n, ψ̃n), we define the worse-case redundancy of any Cn : Γnkn → {0, 1}

∗ as follows:

R̄(Λnf , π̃kn , Cn) := sup
µ∈Λf

(
r(φ̃n, Cn, µn)−Hσ(π̃kn )(µ)

)
.

Therefore for any finite n and first-stage partition π̃kn , the minimax redundancy of the second-stage is:

min
Cn:Γnkn→{0,1}

∗
R̄(Λnf , π̃kn , Cn). (26)

For the second stage, we can use again the connection between prefix-free codes and distributions to map Cn to a probability
v in P(Γnkn), where the redundancy r(φ̃n, Cn, µn)−Hσ(π̃kn )(µ) can be expressed as one over n the divergence restricted to
the cells of π̃kn [24], more precisely as 1

nDσ(π̃kn×···×π̃kn )(µ
n|v) where:

Dσ(π̃kn×···×π̃kn )(µ
n|v) :=

∑
A∈π̃kn×···×π̃kn

µn(A) log
µn(A)

v(A)
,

with π̃kn × · · · × π̃kn being a short-hand for the product partition of Xn induced by π̃kn . Consequently, the USC problem of
the second-stage in (26) given the first stage, i.e., given π̃kn in (23), can be expressed by 1

nR
+(Λnf , σ(π̃kn)) where:

R+(Λnf , σ(π̃kn)) := min
v∈P(Xn)

sup
µn∈Λnf

Dσ(π̃kn×···×π̃kn )(µ
n|v). (27)

R+(Λnf , σ(π̃kn)) can be interpreted as the i-radius of Λnf restricted to the events of the sub-sigma field σ(π̃kn × · · · × π̃kn).9

B. Redundancy Gain Analysis

Returning to our question, in the context of Eq. (27) we know that Dσ(π̃kn×···×π̃kn )(µ
n|v) ≤ D(µn|v) [24], therefore for

any sequence (kn)n of positive integers, it follows that R+(Λnf ) ≥ R+(Λnf , σ(π̃kn)) for all n, Consequently, we have that

lim inf
n→∞

R+(Λnf )

R+(Λnf , σ(π̃kn))
≥ 1. (28)

In particular, we want to determine regimes on (kn)n that guarantee an asymptotic gain in minimax redundancy in the sense
that

lim
n→∞

R+(Λnf , σ(π̃kn))

R+(Λnf )
= 0, (29)

subject to the condition that (1/kn)n is o(1). If (kn)n offers an asymptotic gain on minimax redundancy in the sense of Eq.
(29), then any sequence where (k̃n)n such that (k̃n)n ≤ (kn)n eventually in n offers a gain in the minimax redundancy10.
Therefore it is important to determine the largest size sequence for the tail partition such that (29) is satisfied.

Note that any sequence (kn)n offers a non-zero worst-case distortion for a finite block-length, and if (1/kn)n is o(1) this
worst case distortion goes to zero at rate function of (kn)n and the envelope function f . From this, one could suspect a gain
in the minimax redundancy, in the sense established by (29), no matter how fast (kn)n tends to infinity with the block-length
as long as kn < ∞ for any n. In other words, one simple conjecture is that the complexity of a family of distributions with
infinite degrees of freedom, measured in terms of the rate of convergence to zero of the minimax redundancy per sample
(R+(Λnf )/n)n, cannot be reached by projecting this family into finite but dynamic (with the block-length) alphabets. However,
the following result refutes this initial guess and determines a non-trivial regime for (kn)n with no minimax redundancy gain.
Importantly, this regime is fully determined by (u∗f (n))n (see Def.3 in Section II-A), which can be interpreted as a sequence
of critical dimensions for Λf that was introduced by Bontemps et al. [10], [20] in the context of lossless USC.

Theorem 6 (Minimax redundancy gains): Let Λf ⊂ P(X ) be an envelope family with f ∈ `1(X ) and |supp(f)| = ∞.
In addition, let {π̃kn : n ≥ 1} be the collection of tail-based partitions in (23) driven by a positive non-decreasing sequence
(kn)n. It follows that:

9More details are presented in (44) and (45) in Sec. VIII-C.
10This is a simple consequence of the fact that k ≥ k̃ implies σ(π̃k̃) ⊂ σ(π̃k).
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i) If (kn)n ≥ (u∗f (n))n eventually in n, then there is no gain in minimax redundancy in the sense that:

lim
n→∞

R+(Λnf , σ(π̃kn))

R+(Λnf )
= 1.

ii) Conversely, if (kn)n is o(u∗f (n)), i.e., limn→∞ kn/u
∗
f (n) = 0, then we have a minimax redundancy gain:

lim
n→∞

R+(Λnf , σ(π̃kn))

R+(Λnf )
= 0.

The proof is presented in Section VIII-E.
Analysis and interpretation of Theorem 6:
1) First, we note that the sequence (u∗f (n))n in (6) defines a notion of critical dimension (or cardinality) for the family Λf ,

as it characterizes a boundary (or phase transition) on the size of the tail-based two-stage coding schemes above from
which no gains in terms of the rate of minimax redundancy are obtained.

2) If we consider the regime of redundancy gain, i.e., where (kn)n is o(u∗f (n)), it is simple to note that any arbitrary
partition scheme {πn : n ≥ 1} such that |πn| = |π̃kn | = kn satisfies:

lim
n→∞

R+(Λnf , σ(πn))

R+(Λnf )
= 0.

Then, this scenario of redundancy gain can be extended to any finite alphabet partition strategy, and consequently, we
can say that the condition (kn)n is o(u∗f (n)) offers a trivial regime of minimax redundancy gain. However, what is
not evident is the fact that the tail-based partition offers a non-trivial regime of redundancy gain, in the sense that the
condition (kn)n ≥ (u∗f (n))n eventually with n suffices to guarantee that:

lim
n→∞

R+(Λnf , σ(π̃kn))

R+(Λnf )
= 1.

From this angle, the tail-based partition is efficient (or sufficient) to capture the asymptotic complexity of Λf with a
minimum alphabet size. Complementing this richness property of {π̃kn}, it is simple to verify that the tail partition is
an optimal solution when the objective is to minimize the worst-case distortion of a two-stage lossy coding scheme
restricting the finite size k > 0 on the quantization.

3) From a complexity view-point, R+(Λnf ) measures the complexity of the lossless coding task. Then, for a given finite
partition πn ∈ B(X ), R+(Λnf )− R+(Λnf , σ(πn)) ≥ 0 can be interpreted as the reduction on complexity by the process
of projecting Λnf into a finite alphabet, i.e.,

Λnf /σ(πn) :=
{
µn/σ(πn × · · · × πn) : µ ∈ Λf

}
where µ/σ(π) := {µ(A) : A ∈ σ(π)} ∈ P(X , σ(π)) is a short-hand for the probability µ restricted to the sub-sigma
field induced by π (details presented in Section VIII-E.3). Then, it is interesting to know if the i.i.d. family of envelope
distributions

{
Λnf : n ≥ 1

}
with f ∈ `1(X ) admits a finite but dynamic alphabet reduction that captures its complexity

asymptotically with n. For that question, we can introduce the following:
Definition 8: We say that Λ ⊂ P(X ) has a finite alphabet reduction, if there exists a partition scheme {πn : n ≥ 1}
with |πn| = kn < ∞ such that limn→∞

R+(Λn,σ(πn))
R+(Λn) = 1, or, equivalently, that {Λn : n ≥ 1} is equivalent to

{Λn/σ(πn) : n ≥ 1} in terms of asymptotic information complexity. In this case, we say that (kn)n is a sequence
of sufficient sizes (or sufficient) to represent Λ.
Definition 9: We say that (k∗n)n is the critical (or minimal) size to represent Λf , if (k∗n)n is a sequence of sufficient size
to represent Λ (Def. 8), and no sequence (ln)n exists such that: (ln)n is sufficient to represent Λ and (ln)n � (k∗n)n.
In this context, the proof of Theorem 6 shows as a corollary that (u∗f (n))n is the critical size to represent Λf . The
achievability part is obtained using the tail-based partition and some metric entropy lower bound for the i-radius extended
from [10], [11], [20]. On the other hand, the converse argument derives from basic i-radius results for i.i.d. sources over
finite alphabets [3] and results for envelope families on countably infinite alphabets [9].
Finally, from Boucheron et al. [9, Ths. 3 and 4, and Cor. 2], we have that Λf has either a finite alphabet reduction with
a sub-linear critical size sequence given by (u∗f (n))n (if f ∈ `1(X )), or infinite minimax redudancy for all n ≥ 1.

4) To illustrate the result, let us consider the exponentially decreasing envelop class studied in [9], [20]:

ΛfCe−α =
{
µ ∈ P(X ), fµ(x) ≤ fCe−α(x) = Ce−αx

}
,

where C > 0 and α > 0. It has been shown in [20, Prop. 6] that

1

α
ln(Cx) ≤ UfCe−α (x) + 1 ≤ 1

α
ln(κCx)
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where κ = 1/(1− e−α) and Uf (x) is defined in Def. 20 (see Section VIII-E for details). Importantly for our analysis,
it follows that u∗fCe−α (n)− 1 ≤ UfCe−α (n) < u∗fCe−α

(n) (see Section VIII-E.2), therefore we have that for all n ≥ 1

1

α
ln(Cn) + 1 < u∗fCe−α (n) ≤ 1

α
(ln(κ) + ln(Cn)).

Consequently, the critical dimension of this exponential family, which determines the regime of redundancy gain, scales
like ∼ ( 1

α lnn)n. Similar analysis can be conducted on the power-law envelopes and sub-exponential envelopes classes
studied in [9], [10], [20], [21]. See also an excellent exposition of these last results in [8].

VII. SUMMARY AND CONCLUDING REMARKS

The problem of almost lossless universal source coding for countably infinite alphabet sources is introduced in this work.
Our main result shows that a weak notion of universal (variable length) source coding is feasible for the entire class of
finite entropy stationary memoryless sources. This result is obtained by tolerating a (non-zero) single-letter distortion in the
encoding process that vanishes asymptotically with the block-length. To this end, one key idea is an induced sequence of
partitions of the∞-alphabet, which offers a way to control the worst-case average redundancy associated with the i-radius of a
class of distributions restricted to a subsigma-field. We have also studied a stronger almost losses condition, asking for uniform
convergence of the distortion to zero (over the family of distributions), where it turns out that this variation of weak universality
can be achieved for the same class of envelope distributions that is strong minimax universal in the lossless case. This last
result suggests that asking for a non-zero distortion that convergence to zero point-wise (over the family of distributions) is the
strongest relaxation from the lossless criterion that allows us to control the worst-case redundancy of the problem. Finally, we
show that it is possible to obtain gains in the rate of convergence of the worst-case redundancy of an almost lossless scheme,
with respect to the worst-case redundancy of the lossless case, by tolerating a non-zero distortion that tends to zero with the
block-length. In this context, we fully characterize the regime of gains for a two-stage lossy scheme induced by tail based
partitions.

VIII. PROOFS OF THE MAIN RESULTS

A. Theorem 3

First, we introduce a result and some definitions that will be used in the proof.
1) Preliminaries:
Definition 10: For µ ∈ P(X ) its rate distortion function is given by [4], [25], [26]:

Rµ(d) := inf
P (X̃|X) st. P(X̃ 6=X)≤d

I(X; X̃).

Definition 11: For any µ ∈ P(X ) and θ > 0, let us define µ̃θ ∈ P(X ) by: µ̃θ({i}) := min {θ, µ({i})} for all i > 1 and
µ̃θ({1}) := 1− κθ where κθ :=

∑
i>1 µ̃θ({i}).

Lemma 3: (Ho et al. [17, Th. 1]) Let us consider µ ∈ P(X ), where X is an ∞-alphabet, then there is d0 > 0 such that
∀d ≤ d0

Rµ(d) = H(µ)−H(µ̃θ(d)) (30)

with µ̃θ introduced in Def.11 and θ(d) > 0 being the solution of the condition κθ =
∑
i>1 µ̃θ({i}) = d.

2) Proof of Theorem 3: We consider the non-trivial case where µ has infinite support over X , i.e., infx∈X fµ(x) = 0,
otherwise the problem reduces to a finite alphabet scenario where this result is known [3], [4].

We begin with the converse argument. This reduces to prove that any lossy coding scheme with zero asymptotic distortion
has a rate that convergences to a limit that is grater or equal to H(µ) (see Def. 4). For that, let us assume that we have a lossy
scheme {(fn, gn) : n ≥ 1} such that

lim
n−→∞

d(fn, gn, µ
n) = 0⇔ lim

n−→∞

1

n

n∑
i=1

P
{
Xi 6= (gn(fn(Xn)))i

}
= 0. (31)

If we denote by X̂n := gn(fn(Xn)) the reconstruction, from lossless variable length source coding it is well-known that [3]:

r(fn, µ
n) ≥ 1

n
I(Xn, X̂n)

≥ 1

n

n∑
i=1

I(Xi; X̂i) ≥
1

n

n∑
i=1

Rµ
(
P{Xi 6= X̂i}

)
≥ Rµ

(
1

n

n∑
i=1

P
{
Xi 6= X̂i

})
= Rµ

(
d(fn, gn, µ

n)
)
, (32)

where for the inequalities in (32), we use that X is memoryless, the non-negativity of the conditional mutual information [4],
and the convexity of the rate-distortion function of µ [4], [25]. For the rest we assume that µ is organized in decreasing order
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in the sense that fµ(1) ≥ fµ(2) ≥ · · · 11 and that we are in the regime where d ≤ do (introduced in Lemma 3). Using Lemma
3, we have that Rµ(d) = H(µ)−H(µ̃θ(d)), where if we consider

Kµ(d) := min
{
k > 1 : fµ(k + 1) ≤ θ(d)

}
, (33)

it is simple to verify that:

H(µ̃θ(d)) = (1− κθ(d)) log
1

1− κθ(d)
+ (Kµ(d)− 1) · θ(d) log

1

θ(d)
+

∑
i>Kµ(d)

fµ(i) log
1

fµ(i)
. (34)

From (30) and (31), we focus on exploring H(µ̃θ(dn)) when dn → 0. First, it is simple to verify that d→ 0 implies that θ(d)→ 0
by definition. Then, for a fix µ ∈ PH(X ) with infinite support, the problem reduces to chacaterize limθ→0H(µ̃θ). Note that µ̃θ
converges point-wise to the degenerate probability µ∗ = (1, 0, · · · ) as θ vanishes 12. However, by the entropy discontinuity [18],
[19], [30], the convergence of the measure to µ∗ is not sufficient to guarantee that limθ→0H(µ̃θ) = H(µ∗) = 0.

First, it is simple to note that κθ → 0, as θ → 0 considering that µ̃θ(i)→ 0 for all i ≥ 1, µ ∈ PH(X ), and the dominated
convergence theorem [31]. Then, limθ→0(1 − κθ) log 1

1−κθ = 0, which is the limit of the first term in the RHS of (34). For
the rest, we define the self-information function iµ̃θ (i) := µ̃θ({i}) log 1/µ̃θ({i}) > 0, for all i > 1, and iµ̃θ (1) := 0. By
definition limθ→0 iµ̃θ (i) = 0 point-wise in X , noting that limθ→0Kµ(θ) = ∞ and H(µ) < ∞. Furthermore, there is θ0 > 0
such that for all θ < θ0, 0 ≤ iµ̃θ (i) ≤ iµ̃θ0 (i) for all 13 i ≥ 1, where from the assumption that H(µ) < ∞, and the fact
that Kµ(θ0) < ∞, then (i ˜µθ0

(i)) ∈ `1(X ). Again by the dominated convergence theorem [31], limθ→0

∑
i≥1 iµ̃θ (i) = 0 and

consequently, limθ→0H(µ̃θ) = 0 from (34).
Returning to (32), it follows that for all n ≥ 1,

r(fn, µ
n) ≥ Rµ

(
d(fn, gn, µ

n)︸ ︷︷ ︸
dn:=

)
= H(µ)−H

(
µ̃θ(dn)

)
. (35)

Finally, as dn → 0,

lim inf
n→0

r(fn, µ
n) ≥ H(µ)− lim sup

dn→0
H
(
µ̃θ(dn)

)
= H(µ)− lim

θ→0
H(µ̃θ)

= H(µ). (36)

Therefore, the inequality in (36) implies that Ral(µ) ≥ H(µ) from Definition 4.
The achievability part (i.e., Ral(µ) ≤ H(µ)) follows from the proof of Proposition 1 in Appendix I-C.

B. Theorem 4

For the proof of Theorem 4, we first introduce some definitions and an achievability result:
1) Preliminaries: Regarding the distortion, we need the following definition:
Definition 12: A sequence of partitions {πn : n ≥ 1} of X is asymptotically sufficient for Λ ⊂ P(X ), if it is asymptotically

sufficient for every measure µ ∈ Λ (cf. Definition 5).
Concerning the analysis of the worst-case average redundancy in a lossy context, it is instrumental to introduce the divergence

restricted to a sub-sigma field [24].
Definition 13: Let π be a partition of X and σ(π) ⊂ B(X ) its induces sigma-field. Then, for every µ, v ∈ P(X ), the

divergence of µ with respect to v restricted to σ(π) is [24]:

Dσ(π)(µ|v) :=
∑
A∈π

µ(A) log
µ(A)

v(A)
. (37)

Definition 14: Let Λ ⊂ P(X ) and π be a partition of X . Fot any n ≥ 1, the information radius of Λn ⊂ P(Xn) restricted
to σ(π) is given by:

R+(Λn, σ(π)) := min
vn∈P(Xn)

sup
µn∈Λn

Dσ(π×···×π)(µ
n|vn), (38)

where π × · · · × π denotes the product partition of Xn, P(Xn) is the set of probability measures in (Xn,B(Xn)), and Λn

denotes the collection of all i.i.d (product) probabilities measures in (Xn,B(Xn)) induced by Λ.
Lemma 4: Let us consider Λ ⊂ P(X ). If there is a sequence of partitions {πn : n ≥ 1} of X such that:

11We note that for the charcaterization of Rµ(d) as d→ 0 this assumption implies no loss of generality.
12In the ∞-alphabet the point-wise convergence of probabilities to a limit is equivalent to the weak convergence and the convergence in total variations

[29].
13This follows from the fact that the function θ log 1

θ
is monotonically increasing in the range of (0, θ0) for some θ0 > 0.
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• {πn : n ≥ 1} is asymptotically sufficient for Λ (Def. 12), and
• (R+(Λn, σ(πn)))n is o(n),

then the family of stationary and memoryless sources with marginal distribution in Λ admits an almost lossless source coding
scheme.

The proof is presented in Section VIII-C.
2) Proof of Theorem 4: Let us consider a collection of finite size partitions {πn : n ≥ 1} ⊂ B(X ) with kn = |πn| <∞ for

all n. We note that if ⋂
m≥1

⋃
l≥m

πl(x) = {x} , for all x ∈ X (39)

then, this partition scheme is asymptotically sufficient for P(X ). Concerning the information radius, we have that kn = |πn| <
∞, which reduces the analysis to the finite alphabet case. In this context, it is well-known that [3, Theorem 7.5]:

kn − 1

2
log n−K1 ≤ R+(P(Xn), σ(πn)) ≤ kn − 1

2
log n+K2, (40)

for some universal constants K1 and K2. Then, provided that (kn)n is o(n/ log n) it follows that (R+(P(Xn), σ(πn)))n is
o(n). There are numerous finite partition sequences that satisfy the conditions stated in (39) and (kn)n being o(n/ log n).
For example, the tail partition family given by π̄kn :=

{
{1} , {2} , · · · , {kn − 1} ,Γckn−1

}
, where Γk := {1, · · · , k} and

Γ0 := ∅, considering that (1/kn)n is o(1) and (kn)n is o(n/ log n). Finally, for all Λn ⊂ P(Xn) we have by definition that
R+(Λn, σ(πn)) ≤ R+(P(Xn), σ(πn)), which proves the result by applying Lemma 4.

C. Proof of Lemma 4
Proof: First note that if {πn : n ≥ 1} is asymptotically sufficient for the family Λ, it means that for all µ ∈ Λ,

limn→∞ µ(∪k≥nπk(x) \ {x}) = 0 (Def. 5). If we denote by kn = |πn| and πn = {An.i : 1 ≤ i ≤ kn}, then we can construct
φn : Xn → {1, . . . , kn} such that φ−1

n (i) = An,i for all 1 ≤ i ≤ kn. On the other hand, we can choose an arbitrary yn,i ∈ An.i
for each i ∈ Γkn , and the mapping ψ : Γkn → X in the way ψ(i) = yn,i. At this point, we observe:

d(φn, ψn, µ
n) = P(X 6= ψn(φn(X)))

=

kn∑
i=1

∑
x∈An,i

fµ(x)ρ0,1(x, yn,i)

=

kn∑
i=1

µ(An,i \ {yn,i})

= µ

(
X \

kn⋃
i=1

{yn,i}
)
. (41)

Then, from the hypothesis that {πn : n ≥ 1} is asymptotically sufficient for µ, and the use of bounded convergence theorem,
it is simple to verify that the RHS of (41) goes to zero (see Section I-A). Therefore, this convergence happens point-wise
∀µ ∈ Λ.

Remark 1: It worth mentioning that (41) tends to zero, if and only if, limn→∞ ∪k≥nπk(x) = {x} µ-almost surely (cf.
Lemma 1). Hence, to achieve a point-wise convergence to zero of the distortion over Λ, for this two-stage scheme, it is
necessary and sufficient that {πn : n ≥ 1} is asymptotically sufficient for Λ.

Regarding the second coding stage, we ideally need to find a lossless code with the least worst-case average redundancy
over the family

Λn/σ(πn) := {µn/σ(πn × · · · × πn) : µ ∈ Λ} ⊂ P(Xn, σ(πn × · · · × πn)),

where µ/σ(π) ∈ P(X , σ(π)) is a short hand for the probability µ restricted to the sub-sigma field induced by π 14, and
P (X , σ) denotes the collection of probabilities restricted to the events of the sub-sigma field σ ⊂ B(X ).

In fact, for a lossless prefix-free code Cn : Γnkn → {0, 1}
∗, associated to the first stage φn, its worst-case average redundancy

over Λn is given by:
R(Λn, φn, Cn) := sup

µ∈Λ

(
r(φn, Cn, µn)−H(µ)

)
. (42)

For any fixed µ ∈ Λ, it is clear that the entropy of Φn(Xn) is a lower bound for the average rate of the code, i.e., r(φn, Cn, µn) ≥
1
nH(Φn(Xn)) = Hσ(πn)(µ), then constraining to the events of σ(πn), we are interested in controlling the following stringer
worst-case overhead:

R̄(Λn, φn, Cn) := sup
µ∈Λ

(
r(φn, Cn, µn)−Hσ(πn)(µ)

)
. (43)

14Note that if µ ∈ P(X ), then the restriction µ/σ(π) ∈ P(X , σ(π)) reduces to the evaluation of µ over the cells of π. In fact, {µ(B) : B ∈ π} plays
the role of the probability mass function of µ/σ(π) on the measurable space (X , σ(π)).
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Note that Hσ(πn)−H(µ) ≤ 0 and thus, R̄(Λn, φn, Cn) ≥ R(Λn, φn, Cn). Then, we can choose a code solution to the following
mini-max problem:

C∗n := arg min
Cn:Γnkn→{0,1}

∗
R̄(Λn, φn, Cn), for all n ≥ 1. (44)

From the close connection between probabilities and prefix free codes [3], the performance of the optimal code in (44) is
tightly related to the i-radius of the family Λn/σ(πn) in (38), in the sense that ∀n ≥ 1:

R+(Λn, σ(πn))

n
≤ R̄(Λn, φn, C∗n) ≤ R+(Λn, σ(πn)) + 2

n
. (45)

Finally, from the hypothesis on the information radius and (45), we have that:

lim
n→∞

R(Λn, φn, C∗n) ≤ lim
n→∞

R̄(Λn, φn, C∗n) = 0. (46)

Remark 2: The inequalities in (45) states that the sub-linear trend (with the block-length) on the i-radius of {Λn/σ(πn) : n ≥ 1}
is a necessary and sufficient condition for the existence of a strongly minimax universal code for {Λn/σ(πn) : n ≥ 1}.

D. Theorem 5

Let us first introduce some notations, definitions and results that will be used in the proof of Theorem 5.
Definition 15: For Λ ⊂ P(X ) its i-radius is given and denoted by:

R+(Λ) := inf
v∈P(X )

sup
µ∈Λ
D(µ|v).

Definition 16: For a function φ : X → I (where I is either a finite or a countably infinite set) and µ ∈ P(X ), let us denote
by vµ ∈ P(I) the distribution induced by φ in I trough the standard construction15: vµ(B) := µ(φ−1(B)) for all B ⊂ I.

Lemma 5: Let φ : X → I be a mapping where I is a countably infinite set. Then for any non-negative envelope function
f : X → R+, there is f̃ : I → R+ given by16

f̃(i) := min

{∑
x∈Ai

f(x), 1

}
, (47)

such that {vµ : µ ∈ Λf} = Λ̃f̃ :=
{
v ∈ P(I) : fv(i) ≤ f̃(i) for all i ∈ I

}
.

The proof of this result is presented in Appendix I-D.
Lemma 5 implies that envelope families on X map to envelope families on I through the mapping φ. In this context, the

result by Boucheron et al. [9] in Theorem 1 (in Section II) will be instrumental to prove Theorem 5.
Proof of Theorem 5:
1) Achievability: If f ∈ `1(X ), the fact that Λf has a uniform bound on the tails of the distributions suggests that a family

of tail truncating partitions should be considered to achieve the claim i). Let us define

π̃kn :=
{
{1} , · · · , {kn} ,Γckn

}
, (48)

which resolves the elements of Γkn = {1, . . . , kn} and, consequently, there is a pair (φ̃n, ψ̃n) associated with π̃kn such that
∀µ ∈ Λf :

d(φ̃n, ψ̃n, µ
n) ≤ µ(Γckn) ≤

∑
x>kn

f(x). (49)

In fact, supµ∈Λf
d(φ̃n, ψ̃n, µ

n) ≤∑x>kn
f(x) < ∞, and (1/kn)n being o(1) is a sufficient condition to satisfy the uniform

convergence of the distortion to zero. Furthermore, from the proof of Lemma 4 (Eq.(45)) and (40), there is a lossless coding
scheme

{
C̃n : Γnkn+1 → {0, 1}

∗
: n ≥ 1

}
such that supµ∈Λf

(
r(φn, C̃n, µn) −H(µ)

)
≤ kn · log

√
n/n + O(1/n). Therefore,

we can consider (kn)n being O(nτ ) with τ ∈ (0, 1) to conclude the achievability part.

15There is no question about the measurability of φ(·) as we consider that B(X ) is the power set.
16Ai := φ−1({i}) for any i ∈ I.
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2) Converse for Two-Stage Lossy Coding Schemes: 17 For the converse part, let us first consider an arbitrary two-stage lossy
rule (φn, ψn, Cn) with a finite partition kn = |πn| < ∞. If we denote its prototypes by Yn := {ψ(i) : i ∈ Γkn}, it is clear
that there exists µ ∈ Λf such that supp(µ) ⊂ Ycn, and consequently, d(φn, ψn, µ

n) = 1 for all n. Therefore, for any finite size
partition rule (φn, ψn, Cn) it follows that supµ∈Λf

d(φn, ψn, µ
n) = 1 for all n ≥ 1 and hence, when f /∈ `1(X ) no uniform

convergence on the distortion can be achieved with a finite size lossy rule.
On the other hand, for the family of infinite size partition rules, i.e., (φn, ψn, Cn) such that |πn| =∞, we focus our analysis

on R+(Λnf , σ(πn)) in (38). Let us fix a block-length n > 0 and a rule (φn, ψn, Cn) of infinite size. For sake of clarity, we
consider that φn : X → I, where I is a ∞-alphabet. For any µ ∈ Λf , vµ denotes the induced measure in I by the mapping
φn trough the standard construction (see Def. 16). In addition, it is simple to verify that for any pair µ1, µ2 ∈ P(X )

Dσ(πn)(µ1|µ2) = D(vµ1 |vµ2)

=
∑
i∈I

fvµ1
(i)
fvµ1

(i)

fvµ2
(i)
, (50)

where πn =
{
An,i = φ−1

n ({i}) : i ∈ I
}

and fvµ(i) := µ(An,i) ∀i denotes the pmf of vµ on I. Then,

R+(Λnf , σ(πn)) = R+(
{
vnµ : µ ∈ Λf

}
) (51)

where vnµ denotes de product probability on In with marginal vµ and P(In) is the collection of probability measures on In.
Then, the i-radius of Λnf restricted to the product sub-sigma field σ(πn × · · · × πn) is equivalent to the information radius of{
vnµ : µ ∈ Λf

}
⊂ P(In) (Def. 15). From Lemma 5,

{
vnµ : µ ∈ Λf

}
is an envelope family with envelope function given by

(47). It is simple to verify that f /∈ `1(X ) implies that f̃ /∈ `1(I), Theorem 1 and (51) tell us that R+(Λnf , σ(πn)) = ∞.
Finally, since the i-radius in (51) tightly bounds the least-worst expected redundancy for the second lossless coding stage (see
(44) and (45)), this implies that:

sup
µ∈Λf

(r(φn, Cn, µn)−H(µ)) =∞, (52)

which concludes the argument.
3) Converse for general variable-length lossy codes: Let us consider a general lossy code (fn, gn) of length n > 0 introduced

in Section III. Without loss of generality we can decouple fn as the composition of a vector quantizer φn : Xn → In, where
In is an index set, and a prefix-free losses mapping Cn : In → {0, 1}∗, where f(xn) = Cn(φn(xn)) for all xn ∈ Xn. From
this, we characterize the vector quantization induced by (fn, gn) as follows:

πn :=
{
φ−1
n ({i}) : i ∈ In

}
⊂ B(Xn). (53)

Using this two-stage (vector quantization-coding) view, it is possible to show that18:

R̄(Λf , fn) := sup
µ∈Λf

(
r(fn, µ

n)− 1

n
Hσ(πn)(µ

n)
)
≥ 1

n
inf

v∈P(Xn)
sup
µ∈Λf

Dσ(πn)(µ
n|v), (54)

which means that the worst-case overhead, expressed by R̄(Λf , fn), is lower bounded by the i-radius of the n-fold family
Λnf projected into the sub-sigma field induced by πn, i.e., a quantization of Xn. Considering that f /∈ `1(X ), we follow
the construction presented in [9] that shows that there is an infinite collection of distributions Λ̃ = {µ̃j ∈ Λf , j ∈ J } with
|J | =∞, where if we denote by

Aµ̃j := supp(µ̃j) =
{
x ∈ X : fµ̃j (x) > 0

}
,

then
∣∣Aµ̃j ∣∣ <∞ for each j ∈ J and for any j1 6= j2, Aµ̃j1∩Aµ̃j2 = ∅. In this context, for each j ∈ J Anµ̃j := Aµ̃j×. . .×Aµ̃j ∈

Xn is the support of µ̃nj .
At this point, let us use the assumption that: supµ∈Λf

d(fn, gn, µ
n) < 1. This implies that supµ∈Λ̃ d(fn, gn, µ

n) < 1. From
the fact that Λ̃ is an infinite collection of probabilities with disjoint supports and the definition of the distortion, it is simple
to verify that we need to allocate at least one prototype19 per cell Anµ̃j , which implies that |In| = ∞, because otherwise it
follows that supµ∈Λ̃ d(fn, gn, µ

n) = 1.
Using (54), we will focus on evaluating the information radius of Λ̃n projected over the measurable space (Xn, σ(πn))

considering that by definition:

inf
v∈P(Xn)

sup
µ∈Λ̃

Dσ(πn)(µ
n|v) ≤ inf

v∈P(Xn)
sup
µ∈Λf

Dσ(πn)(µ
n|v). (55)

17We first present this preliminary converse argument, as it provides the ground to explore the redundancy gain analysis presented in Section VI.
18The proof of (54) is presented in Appendix I-E.
19The prototypes of (fn, gn) is the set Bn =

{
gn(fn(xn1 )) : xn1 ∈ Xn

}
.
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For every j ∈ J , let us define the covering of the support of µ̃nj ∈ Λ̃n by

πn(Anµ̃j ) :=
{
B ∈ πn : Anµ̃j ∩B 6= ∅

}
and B(Anµ̃j ) :=

⋃
B∈πn(Anµ̃j )

B. (56)

By construction, we note that
∣∣∣Anµ̃j ∣∣∣ <∞ and consequently

∣∣∣πn(Anµ̃j )
∣∣∣ <∞ for all j ∈ J . Considering that πn has an infinite

number of cells, we can choose an infinite subset of elements in Λ̃n =
{
µ̃nj : j ∈ J

}
in the following way: We fix j1 = 1

and µ̄1 = µ̃1 ∈ Λ̃, then we consider

j2 = min
{
j > j1, such that B(Anµ̃j ) ∩ B(Anµ̄1

) = ∅
}
<∞, (57)

and we choose µ̄2 = µ̃j2 ∈ Λ̃. Iterating this rule, at the k-stage (k ≥ 2) we solve

jk = min

{
j > jk−1, such that B(Anµ̃j ) ∩

(
k−1⋃
l=1

B(Anµ̄l)
)

= ∅
}
<∞ (58)

and we take µ̄k = µ̃jk ∈ Λ̃, for all k ≥ 1. Note that the solution of (58) is guaranteed from the fact that |J | = ∞ and∣∣∣πn(Anµ̃j )
∣∣∣ <∞ for all j. Finally, we define Λ̄n := {µ̄nl : l ≥ 1} ⊂ Λ̃n. Importantly (for the computation of the i-radius), this

restricted family of distributions has the property that their support coverings in (56) are disjoint by its construction in (58).
From Λ̄n, we can induce the following partition:

ξn :=
{
B(Anµ̄l) : l ≥ 1)

}
∪

Xn \⋃
l≥1

B(Anµ̄l)

 ⊂ σ(πn), (59)

where the last identity is from the construction, as every cell of ξn is a finite union of cells of πn (i.e., ξn � πn). It is not
difficult to check that for every v ∈ P(Xn), we have that 20

sup
µ̄l∈Λ̄

Dσ(ξn)(µ̄
n
l |v) =∞. (60)

Consequently, we have that

inf
v∈P(Xn)

sup
µ̃j∈Λ̃

Dσ(πn)(µ̃
n
j |v) ≥ inf

v∈P(Xn)
sup
µ̃j∈Λ̃

Dσ(ξn)(µ̃
n
j |v)

≥ inf
v∈P(Xn)

sup
µ̄l∈Λ̄

Dσ(ξn)(µ̄
n
l |v) =∞, (61)

the first inequality derives from ξn � πn and the second from Λ̄ ⊂ Λ̃. Finally (61) and the relationship between the worst-case
redundancy and the information radius in (54) (Prop. 2 in Appendix I-E) imply that

R̄(Λ̃, fn) = sup
µ̃j∈Λ̃

(
r(fn, µ̃

n
j )− 1

n
Hσ(πn)(µ̃

n
j )
)

=∞. (62)

In other words, from (62) there is jo ∈ J such that r(fn, µ̃njo)− 1
nHσ(πn)(µ̃

n
jo) =∞, where considering that by construction

1
nHσ(πn)(µ̃

n
jo) ≤ H(µ̃jo) < log

∣∣Aµ̃jo ∣∣ <∞, this implies that r(fn, µ̃njo)−H(µ̃jo) =∞. Therefore, we have that

sup
µ̃j∈Λ̃

(
r(fn, µ̃

n
j )−H(µ̃nj )

)
=∞, (63)

which concludes the result considering that Λ̃ ⊂ Λf .

E. Theorem 6

Without loss of generality, in this section we assume that X is the integer set N \ {0}. To organize the proof, we first
introduce some definitions and a series of important results that will be used in the main argument.

20This results follows from the fact that the elements of Λ̄n projected into the sub-sigma field ξn degenerate, i.e., Hσ(ξn)(µ̄
n
l ) = 0 for all l ≥ 1.
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1) Preliminaries:
Definition 17: [10] For a non-negative function f : X → R+, the hazard function of Λf is given by

hf (u) := − ln F̄f (u)

for all u ∈ X .
Definition 18: [10] The continuous extension of (hf (u))u∈X to the positive real line R+ is defined by means of the

following linear interpolation21:

h̃f (kλ+ (1− λ)(k + 1)) := λhf (k) + (1− λ)hf (k + 1)

for k ∈ X and for all λ ∈ [0, 1).
Consistently with (h̃f (x))x≥0, in Def.18, it is possible to extend (Ff (u))u∈X to R+ using the relationship expressed in Def.

17:
Definition 19: Given f : X → R+, the continuous extension of (Ff (u))u∈X using (h̃f (x))x≥0 (Def. 18) is denoted by

(Ff (x))x≥0 and called the smoothed envelope distributions of Λf .
Definition 20: [10, Eq.(1)] Under the setting of Def. 19, a function Uf : [1,∞] −→ R can be defined as the solution of:

Uf (t) := F−1
f (1− 1/t) , (64)

for all t ≥ 1.
Definition 21: Let (f(x))x∈X be non-negative and in `1(X ). A non-decreasing continuous function can be obtained as22:

lf (1/ε) :=

∫ 1/ε2

1

Uf (x)

2x
∂x,

for any ε > 0.
Definition 22: Let (εf,n)n≥1 be the sequence obtained as the solution (point-wise) of: lf (1/ε) = nε2

8 for all n.
We are in the position to state two instrumental results:
Lemma 6: [9, Th. 4] Let

{
Λnf , n ≥ 1

}
be the envelope collection of stationary and memoryless sources with f ∈ `1(X )

and tail function (F̄f (u))u∈X . Then for any n ≥ 1

R+(Λnf ) ≤ inf
u≥1

[
nF̄f (u) log(e) +

u− 1

2
· log n

]
+ 2.

Lemma 7: [10, Prop. 5] Under the setting of Lemma 6, there is a sequence (ξn)n being o(1) (and function of f ) such
that:23

R+(Λnf ) ≥ (1 + ξn) log(e)

∫ n

1

Uf (x)

2x
∂x, for all n ≥ 1. (65)

We also use results from the seminal work of Haussler and Opper [11] that we summarize here:
Definition 23: For any µ1, µ2 ∈ P(X ), the Hellinger distance is given/denoted by: dh(µ1.µ2)2 :=

∑
x∈X (

√
fµ1

(x) −√
fµ2

(x))2.
Definition 24: [11] For Λ ⊂ P(X ) and ε > 0, let Dε(Λ) be the smallest cardinality of a partition of Λ, whose cells have

a diameter smaller or equal then ε (with respect to dh in P(X )) or it is infinity if no finite partition satisfies the diameter
condition. Then, the metric entropy of Λ is given by:

Hε(Λ) := ln(Dε(Λ)).
Then the following important results can be stated:

Lemma 8: [11, Lemma 7] Let us assume that Λ ⊂ P(X ) is totally bounded, i.e., Hε(Λ) <∞ for all ε > 0. Then, for all
n ≥ 1,

R+(Λn) ≥ log(e) · sup
ε>0

min

{
Hε(Λ),

nε2

8

}
− 1.

Corollary 1: From Lemma 8, if we let ε∗Λ,n := inf
{
ε > 0 : Hε(Λ) ≤ nε2

8

}
, we have that ∀n ≥ 1:

R+(Λn) ≥ log(e) · Hε∗Λ,n(Λ)− 1, (66)

and, consequently,
lim inf

n→∞
R+(Λn)/ log(e)Hε∗Λ,n(Λ) ≥ 1.

21This idea was proposed by Bontemps et al. [10] following Anderson [32].
22See Eq.(67).
23Remarkably, it has been shown in [10, Th. 2] that this closed-form lower bound captures the precise asymptotic of the information radius of the envelope

class, meaning that: limn→∞R+(Λnf )/ log(e)
∫ n
1

Uf (x)

2x
∂x = 1.
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It is worth noting that the metric entropy lower bound for the information radius in Corollary 1 can be asymptotically tight,
e.g., under a slowly variant condition on the behaviour of Hε(Λ) as ε goes to zero [10].24

Importantly for envelope families, when f ∈ `1(X ) the asymptotic of the metric entropy of Λf , i.e., limε→0Hε(Λf ), is
known. More precisely, Bontemps et al. [10, Prop.4] have shown that

Hε(Λf ) = (1 + of (1))

∫ 1/ε2

1

Uf (x)

2x
∂x (67)

as ε tends to 0.
2) Proof of Theorem 6— Regime of Gain in Minimax Redundancy: Let us assume that (kn)n is o(u∗f (n)). This part derives

directly from the tight lower and upper bounds developed by Bontemps et al. [10, Th. 2] and Boucheron et al. [9, Th. 4] for
the case of summable envelopes. In particular, from Lemmas 6 and 7, we have that

R+(Λnf ) ≤
[
nF̄f (u∗f (n)) log(e) +

u∗f (n)− 1

2
log n

]
+ 2 ≤ 2 + log(e) +

u∗f (n)− 1

2
log n.

On the other hand, it has been shown that 25∫ n

1

Uf (x)

2x
∂x ≥ Uf (n) log n

4
≥

(u∗f (n)− 1)

4
log n. (68)

Consequently, from Lemma 7 we have that eventually with n:

(1 + ξn)
(u∗f (n)− 1)

4
log n ≤ R+(Λnf ) ≤ 2 + log(e) +

(u∗f (n)− 1)

2
log n, (69)

which means that (R+(Λnf ))n ≈ (u∗f (n) log n). Moreover, it is well-known that [3]:

R+(Λnf , σ(π̃kn)) ≤ R+(Pn(kn)) ≤ kn − 1

2
log n+K, (70)

for some K > 0, where P(kn) is a short-hand for the collection all probabilities defined on the finite alphabet Γkn , i.e., the
simplex of dimension kn − 1. Consequently, under the assumption that (kn)n is o(u∗f (n)), from (69) and (70) it follows that:

lim
n→∞

R+(Λnf , σ(π̃kn))

R+(Λnf )
= 0.

3) Proof of Theorem 6 — Regime of No-gain in Minimax Redundancy: Let us assume that (kn)n ≥ (u∗f (n))n eventually
with n. Here we adopt results from the seminal work of Haussler and Opper [11] that offers a lower bound for the mutual
information and consequently, the channel capacity that corresponds to the information radius of a family of distributions [3].
However in our problem, we have a dynamic collection of distributions, explained by the process of projecting Λf into the
dynamic collection of sub-sigma fields {σ(π̃kn) : n ≥ 1}. More precisely, and adopting the notation introduced in Section
VIII-C, we have the collection of distributions:

Λnf /σ(π̃kn) :=
{
µn/σ(π̃kn × · · · × π̃kn) : µ ∈ Λf

}
⊂ P(Xn, σ(π̃kn × · · · × π̃kn)), (71)

for all n ≥ 1, where µ/σ(π) := {µ(A) : A ∈ σ(π)} ∈ P(X , σ(π)) denotes the probability µ restricted to the sub-sigma field
induced by π and P(X , σ) denotes the collection of probabilities restricted to the events of the sub-sigma field σ ⊂ B(X ).
Furthermore, associated to π̃kn = {Akn,i : i = 1, .., kn} there is a lossy mapping φn : Xn −→ Γkn where φ−1

n (i) = Akn,i
for i ∈ Γkn . Consequently through φn, every µ ∈ P(X ) induces a probability in Γkn , which we denote by ρµ,kn ∈ P(Γkn),
by the standard construction: ρµ,kn(B) = µ(φ−1

n (B)) for all B ⊂ Γkn . Note that ρµ,kn is fully characterized by its pmf
fρµ,kn (i) = ρµ,kn({i}) = µ(Akn,i), ∀i ∈ Γkn , where we have that fρµ,kn (i) = fµ(i) if i < kn and fρµ,kn (kn) = 1−µ(Γkn−1).
By letting

Λ̃f,kn := {ρµ,kn : µ ∈ Λf} ⊂ P(Γkn),

from (51) we have that:
R+(Λnf , σ(π̃kn)) = R+(Λ̃nf,kn). (72)

24More details are presented in [11, Lem. 8, Th. 4 and Th. 5].
25Notice that:

∫ n
1

Uf (x)

2x
∂x = 1

2

∫ lnn
0 Uf (ey)∂y ≥ Uf (n) lnn

4
, the last inequality from the concavity and positivity of Uf (ey) shown in [10, pp. 814].

On the other hand, from their definitions ∀n ∈ X , u∗f (n)− 1 ≤ Uf (n) < u∗f (n).
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Consequently, the problem reduces to characterize the information radius of a family of dynamic distributions
{

Λ̃nf,kn , n ≥ 1
}

(defined on a dynamic alphabet whose size grows with the block-length). Using the envelope conditions of Λf and Lemma 5
in Section VIII-D, it is simple to show that Λ̃f,kn satisfies an envelope condition on P(Γkn), more precisely:

Λ̃f,kn =

{
ρ ∈ P(Γkn) : fρ(i) ≤ f(i), for i = [1 : kn−1] and fρ(kn) ≤

∑
l>kn−1

f(l) = F̄f (kn − 1)

}
. (73)

Then, if we consider the extended (over the integer) finite size envelope function f̃kn : X −→ R+ given by: f̃kn(i) := f(i)
for i = [1 : kn − 1], f̃kn(kn) := F̄f (kn − 1) and f̃kn(i) := 0 for i > kn, Λ̃f,kn is equivalent to Λf̃kn

⊂ P(X ) and thus,

R+(Λnf , σ(π̃kn)) = R+(Λ̃nf,kn) = R+(Λn
f̃kn

), ∀n ≥ 1. (74)

Therefore, studying the minimax redundancy gain reduces to analyze the family of envelope distributions of finite size{
Λf̃kn

: n ≥ 1
}

, where supp(f̃kn) ⊂ Γkn by construction. If we consider,

ε∗n,k := inf

{
ε > 0 : Hε(Λf̃kn ) ≤ nε2

8

}
, (75)

the straight adoption of Lemma 8 in this dynamic context implies that

R+(Λn
f̃kn

) ≥ log(e) · Hε∗n,kn (Λf̃kn
)− 1

for all n and, consequently,
lim inf
n−→∞

R+(Λn
f̃kn

) ≥ log(e) · lim inf
n−→∞

Hε∗n,kn (Λf̃kn
)− 1. (76)

Following the approach proposed by Haussler et al. [11], the idea is to obtain a tight approximation (ideally in closed-form)
of the RHS of (76), assuming that the function Hε∗n,kn (Λf̃kn

) is asymptotically lower bounded by a continuous non-decreasing
function. With that objective in mind, the following important result (Theorem 7 below) can be obtained. For the statement of
this result, the following definition is needed:

Definition 25: Given (f(x))x∈X , non-negative and in `1(X ), and a sequence of positive integers (kn)n, we say that (εn)n ∈
(R+ \ {0})N is admissible for (kn)n given Λf if

F̄f (kn − 1) ≤ ε2n
16

(77)

holds eventually (with n).
Theorem 7: Let us consider Λf ⊂ P(X ), with f ∈ `1(X ) and supp(f) = X , and a sequence of non-decreasing positive

integers (kn)n such that (1/kn)n is o(1). If (εf,n)n is admissible for (kn)n given Λf (see Def. 25) then

lim inf
n→∞

R+(Λn
f̃kn

)

log(e) ·
∫ n

1
Uf (x)

2x ∂x
≥ 1

The proof of Theorem 7 is presented in Section VIII-F.
Remark 3: In general we have that

R+(Λn
f̃kn

) = R+(Λnf , σ(π̃kn)) ≤ R+(Λnf ),

the last inequality from (74). On the other hand, it is known from [10, Th. 2] that there is a sequence (an)n being o(1) where
eventually in n

R+(Λnf ) ≤ (1 + an) log(e) · lf (
√
n) = (1 + an) log(e) ·

∫ n

1

Uf (x)

2x
∂x. (78)

Consequently, under the assumptions of Theorem 7 it follows directly from this result and (78) that

lim
n→∞

R+(Λn
f̃kn

)

R+(Λnf )
= 1. (79)

Returning to the proof, from Theorem 7, Definition 25 and Remark 3, a sufficient condition to obtain (79) (i.e., no
gain in minimax redundancy) is that (

√
F̄f (kn))n � (εf,n)n (see some remarks about this in Lemma 10, Section VIII-F

below). Furthermore from the proof of Theorem 7, we have that (εf,n) = (
√

8/n · l(1/εf,n))n ∼ (
√

8/n · lf (
√
n))n =

(
√

8/n ·
∫ n

1
Uf (x)

2x ∂x)n, where it is known that
∫ n

1
Uf (x)

2x ∂x ≥ Uf (n) lnn
4 [10, pp.814]. From the main assumption, which

consider that there is No > 0 such that ∀n ≥ No, kn ≥ u∗f (n), we note that(
F̄f (kn)

(εf,n)2

)
n

∼
(
n · F̄f (kn)∫ n
1
Uf (x)

2x ∂x

)
n

,
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where for the second series we have that:
n · F̄f (kn)∫ n
1
Uf (x)

2x ∂x
≤ 4n · F̄f (kn)

Uf (n) lnn

≤
4n · F̄f (u∗f (n))

Uf (n) lnn

<
4

Uf (n) lnn
−→ 0. (80)

The strict inequality in (80) is by definition of u∗f (n) in (6), where 1/n ∈ (F̄f (u∗f (n)), F̄f (u∗f (n)− 1)]. The last convergence
in the RHS of (80) is from the fact that Uf (n) ∈ [u∗f (n) − 1, u∗f (n)) → ∞ as n tends to infinity, this follows from (6) and

the non-trivial assumption that |supp(f)| =∞. In summary, from (80) we have that
(√

F̄f (kn)
)
n
� (εf,n)n, then Theorem

7 and its corollary in (79) implies that limn→∞
R+(Λn

f̃kn
)

R+(Λnf ) = 1. This last limit and (74) conclude the proof.

F. Theorem 7

To organize the proof of Theorem 7, we present first two instrumental results:
The first result is a simple extension of [11, Lemma 8]:
Lemma 9: Let us consider the dynamic collection of distributions

{
Λf̃kn

: n ≥ 1
}

presented in (73) where f ∈ `1(X ),
and let (kn)n be a non-decreasing sequence of integers. In addition, let l : R+ → R+ be a strictly increasing and unbounded
continuous function. Let us denote by (εl.n)n the solutions to the expression: l(1/ε) = nε2

8 for all n. If there is a sequence
(εn)n such that:

1) (εn)n ≤ (εl.n)n holds eventually with n, and

2) lim infn→∞
Hεn (Λf̃kn

)

l(1/εn) ≥ 1,

then26

lim inf
n→∞

R+(Λn
f̃kn

)

log(e) · l(1/εn)
≥ 1.

The proof is presented in Section VIII-G.
The second result characterizes a sufficient condition on (εn)n, function of (kn)n, i.e., the size sequence of tail based

partitions, where the metric entropy of our collection of envelope distributions shares the same asymptotic than the unconstrained
family determined in (67).

Lemma 10: Let us consider a sequence of non-negative integer (kn)n and a sequence of non-negative reals (εn)n, where
(1/kn)n is o(1) and (εn)n is o(1). If f ∈ `1(X ) and (εn)n is admissible for (kn)n given Λf (see Def. 25) then

Hεn(Λf̃kn
) = (1 + an)

∫ 1/ε2n

1

Uf (x)

2x
∂x

for a sequence (an)n being o(1), and consequently,

lim
n→∞

Hεn(Λf̃kn
)

lf (1/εn)
= lim
n→∞

Hεn(Λf̃kn
)

Hεn(Λf )
= 1, (81)

where lf (1/ε) =
∫ 1/ε2

1
Uf (x)

2x ∂x for ε > 0 (see Def. 21).
The proof of this result is presented in Section VIII-H.
Comments on Lemma 10:
1) Lemma 10 establishes concrete sufficient conditions where (Hεn(Λf̃kn

))n has the same asymptotic than the metric

entropy of the unconstrained family (Hεn(Λf ))n, which is ∼ (
∫ 1/ε2n

1
Uf (x)

2x ∂x)n from (67).
2) The proof of this result follows the volume comparison arguments proposed by Bontemps in [20, Lemmas 1 and 2].
3) Note that if limn→∞ F̄f (kn)/ε2n = 0 implies that (εn)n is admissible for (kn)n given Λf .
4) Given (kn)n and f ,

√
F̄f (kn) offers a lower bound on the admissible regime for (εn)n (see Def.25).

5) If (k̃n)n � (kn)n, i.e., kn/k̃n → 0 as n→∞, then from Definition 25 (k̃n)n offers a bigger admissible range for the
(εn)n than its counterpart for (kn)n.

Finally, as the asymptotic of the metric entropy in (67) offers a tight lower bound to the information radius of envelope
families [10, Th.2], Lemma 10 in conjunction with Lemma 9 provide the mean to characterize a regime of no gain in minimax
redundancy as presented in the proof of Theorem 7 below.

26In particular, if lim infn→∞
Hεl,n (Λ

f̃kn
)

l(1/εl,n)
≥ 1 then lim infn→∞

R+(Λn
f̃kn

)

log(e)·l(1/εl,n)
≥ 1.
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Proof of Theorem 7: Using the hypothesis that (εf,n)n is admissible for (kn)n given Λf , we have from Lemma 10 that as
n goes to infinity:

Hεf,n(Λf̃kn
) ≥ (1 + o(1)) · lf (1/εf,n), (82)

which implies that

lim inf
n→∞

Hεf,n(Λf̃kn
)

lf (1/εf,n)
≥ 1. (83)

Note that lf (x) =
∫ x2

1
Uf (x̄)

2x̄ ∂x̄ on [1,∞) (Def.21) is strictly increasing, continuous and unbounded, consequently applying
Lemma 9 it follows that:

lim inf
n→∞

R+(Λn
f̃kn

)

log(e) · lf (1/εf,n)
≥ 1 ⇔ lim inf

n→∞

R+(Λn
f̃kn

)

log(e) · nε2f,n/8
≥ 1, (84)

where the last identity follows from the definition of εf,n in Def. 22.
At this point we use the result in [10, Proposition 3] that shows that the function (lf (x)) is very slowly variant [10, Def.

4], in the sense that ∀η ≥ 0 and κ > 0,

lim
x→∞

lf (κxlf (x)η)

lf (x)
= 1. (85)

This slowly variant condition implies that (εf,n)n, as a (point-wise) solution of the condition lf (1/ε) = nε2/8, satisfies
asymptotically (the argument is presented in the proof of [11, Theorem 5]) that:(

ε2f,n/8
)
n
∼
(
lf (
√
n)

n

)
n

=

(
1

n

∫ n

1

Uf (x)

2x
∂x̄)

)
n

. (86)

Consequently (86) and (84) prove the result.

G. Proof of Lemma 9

Proof: From Lemma 8 it follows that for all n:

R+(Λn
f̃kn

)

l(1/εl,n)
≥ log(e) ·min

{
Hεl,n(Λf̃kn

)

l(1/εl,n)
,

nε2

8 · l(1/εl,n)

}
− 1

l(1/εl,n)
,

= log(e) ·min

{
Hεl,n(Λf̃kn

)

l(1/εl,n)
, 1

}
− 1

l(1/εl,n)
. (87)

As (εl,n) ≥ (εn), without loss of generality we assume that there is a mapping τ : N −→ N such that εl,n = ετ(n) for every
n, where τ(n) ≤ n eventually with n. From construction (εl,n) is o(1) and thus, l(1/εl,n) −→∞. Then,

lim inf
n−→∞

R+(Λn
f̃kn

)

l(1/εl,n)
≥ log(e) ·min

{
lim inf
n−→∞

Hετ(n)
(Λf̃kn

)

l(1/ετ(n))
, 1

}

= log(e) ·min

lim inf
n−→∞

Hεn
(

Λf̃k
τ−1(n)

)
l(1/εn)

, 1


≥ log(e) ·

lim inf
n−→∞

Hεn
(

Λf̃kn

)
l(1/εn)

, 1

 (88)

≥ log(e), (89)

where the inequality in (88) follows from the fact that Hε
(

Λf̃k

)
≤ Hε

(
Λf̃k̄

)
if k̄ ≥ k and that τ−1(n) ≥ n, and (89) from

the main hypothesis of Lemma 9.
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H. Proof of Lemma 10

Proof: Following the lower bound for Dε(Λf ) elaborated in [20, Lemma 3], which is based on a covering argument and
volume based inequality, we have that for all m ≥ 1 and any arbitrary k such that m+ lf ≤ k (see Def. 2),

Dε(Λf̃k) ≥
Vol

(
lf+m∏
i=lf+1

[0,
√
f̃k(i)]

)
Vol (Bm(ε))

=

lf+m∏
i=lf+1

√
f̃k(i)

εmVol(Bm)
, (90)

where Bm(ε) denotes the ball in Rm of radius ε, and Bm := Bn(1). If we consider

Nε := inf
{
m ≥ 1 : F̄f (m) < ε2/16

}
and let Ñk

ε := min {Nε, k}, and we evaluate (90) with m = Ñk
ε − lf it follows that

Hε(Λf̃k) = lnDε(Λf̃k)

≥
Ñkε∑

i=lf+1

ln

√
f̃k(i)− ln Vol(BÑkε −lf )− (Ñk

ε − lf ) ln 1/ε. (91)

On the other hand, we can adopt the upper bound in [20, Lemma 2] that is based on another volume comparison argument,
leading to

Dε(Λf̃k) ≤
Vol

(
Ñkε∏
i=1

[
−ε/8,

√
f̃k(i) + ε/8

])
Vol
(
BÑkε (ε/8)

)

=

Ñkε∏
i=1

(√
f̃k(i) + ε/4

)
(ε/8)Ñ

k
ε · Vol(BÑkε )

. (92)

This inequality reduces to [10, Eq. (6)]

Hε(Λf̃k) ≤
lf∑
i=1

ln

(√
f̃k(i) + ε/4

)
+

Ñkε∑
i=lf+1

ln

(√
f̃k(i)

)

− ln
(

Vol
(
BÑkε

))
+

Ñk
ε − lf√
1− e−b

+ Ñk
ε ln 8/ε, (93)

for b = − ln F̄ (lf ) > 0.
If we consider the regime where Nε < k, then it follows that Nε = Ñk

ε and {lf + 1, . . . , Nε} ⊂ {1, . . . , k − 1}. Therefore
f̃k(i) = f(i) for all i ∈ {lf + 1, .., Nε}. In this scenario, we have that

Hε(Λf̃k) ≥
Nε∑

i=lf+1

ln
√
f(i)− ln Vol(BNε−lf )− (Nε − lf ) ln 1/ε and (94)

Hε(Λf̃k) ≤
lf∑
i=1

ln(
√
f(i) + ε/4) +

Nε∑
i=lf+1

ln(
√
f(i))− ln (Vol(BNε)) +

Nε − lf√
1− e−b

+Nε ln 8/ε. (95)

We point out that the RHS expression of (94) and (95) are the very same lower and upper bounds derived in [10, Eq.(7)
and Eq.(6)] for Hε(Λf ), respectively. Consequently in this regime, we obtain the lower and upper bound expressions of the
unconstrained (i.e., lossless) problem.
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By definition Nε < k is equivalent to the condition that F̄f (k − 1) ≤ ε2

16 . Using the hypothesis that (kn) and (εn) are such
that the condition in Eq.(77) (in Def.25) is satisfied eventually with n, it follows that

lim inf
n→∞

Hεn(Λf̃kn
) ≥ lim inf

n→∞


Nεn∑

i=lf+1

ln
√
f(i)− ln Vol (BNεn−lf )− (Nεn − lf ) ln 1/εn

 , (96)

lim sup
n→∞

Hεn(Λf̃kn
) ≤ lim sup

n→∞


lf∑
i=1

ln
(√

f(i) + ε/4
)

+

Nε∑
i=lf+1

ln
(√

f(i)
)

− ln (Vol(BNε)) +
Nε − lf√
1− e−b

+Nε ln 8/ε

}
. (97)

To conclude, it has been shown in [10, Prop. 4] that the RHS of both (94) and (95) behaves asymptotically as (1 +

o(1))
∫ 1/ε2

1
Uf (x)

2x ∂x when ε goes to zero. Consequently given that by hypothesis εn −→ 0, this fact implies that Hεn(Λf̃kn
) =

(1 + o(1))
∫ 1/ε2n

1
Uf (x)

2x ∂x as n tends to infinity. Finally (81) follows from (96), (97) and [10, Prop. 4].
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APPENDIX I
SUPPORTING RESULTS

A. Proof of Lemma 1

Proof: Let first prove the sufficient condition. Let us assume that {πn : n ≥ 1} is asymptotically sufficient for µ. The
induced distortion is given by

d(φn, ψn, µ
n) =

∑
x∈X

fµ(x) · ρ(x, ψn(φn(x)))︸ ︷︷ ︸
gn(x):=

. (98)

Considering that µ(lim supn πn(x)) = fµ(x) for all x ∈ supp(µ), then it follows that limn→∞ ψn(φn(x))) = x, µ-almost
everywhere and limn→∞ gn(x) = 0, µ-almost surely. Furthermore, gn(x) is a bounded function by definition, then the bounded
convergence theorem [31] implies that limn→∞

∫
X gn(x)dµ(x) = 0⇔ limn→∞ d(φn, ψn, µ

n) = 0.
For the converse, let us assume that ∩n≥1 ∪m≥n πm(x) 6= {x}, µ-almost surely. In other words, ∃x, xo ∈ supp(µ) with

x 6= xo such that {x, xo} ⊂ limn→∞ ∪m≥nπm(x). Consequently, there exists N such that for all n ≥ N , d(φn, ψn, µ
n) ≥

min {fµ(x), fµ(xo)} ·min {ρ(x, xo), ρ(xo, x)} > 0.

B. Proof of Lemma 2

For the proof we need the following definitions:
Definition 26: Let us consider µ ∈ P(X ) and a function g : X → R. g is said to be integrable with respect to µ if∑
x∈X |g(x)| fµ(x) <∞. Finally, `1(µ) denotes the collection of all integrable functions with respect to µ.

Proof: Let us consider:

H(µ)−Hσ(πn)(µ) =
∑
x∈X

fµ(x) · log
µ(πn(x))

fu(x)︸ ︷︷ ︸
g̃n(x):=

. (99)

From the assumption that H(µ) <∞, then g̃n(x) ∈ `1(µ). Furthermore, under the assumption that {πn : n ≥ 1} is asymptot-
ically sufficient, we have that limn→∞ µ(πn(x)) = fµ(x) for all x ∈ supp(µ) and thus, limn→∞ g̃n(x) = 0 µ-almost every-
where. Finally considering that g̃n(x) ≤ log 1/fµ(x) ∈ `1(µ), the dominated convergence theorem implies that limn→∞

∑
x∈X fµ(x)·

g̃n(x) = 0.
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C. Proof of Proposition 1:

Proof: The argument reduces to verify the achievability of the entropy using a two-stage lossy construction. For that we
consider the tail partition

πn = {{1} , . . . , {n} , {n+ 1, . . . , }} , (100)

associated to φn(x) = x if x ∈ {1, .., n} and otherwise φn(x) = 0. It is simple to verify that this scheme satisfies the zero
distortion condition. For the lossless coding of Y n = Φn(Xn) ∈ {0, 1, . . . , n}n, we can consider the prefix-free Shannon code
[4], whose rate is at most two bits away from the entropy of Y n. Hence, there is Cn : {0, 1, .., n}n −→ {0, 1}∗ such that:

r(φn, Cn, µn) ≤ H(Y n) + 1

n
=
Hσ(πn)(µ) + 1

n
, (101)

which suffices to show that
lim sup
n−→∞

r(φn, Cn, µn) ≤ H(µ), (102)

and therefore Ral(µ) ≤ R̄al(µ) ≤ H(µ).

D. Proof of Lemma 5

Proof: First, it is direct to show that {vµ : µ ∈ Λf} ⊂ Λ̃f̃ . Then, it remains to prove that for any v ∈ Λ̃f̃ there is µ ∈ Λf
such that vµ = v, in total variations. Let us fix an arbitrary i ∈ I. If we first assume that |An,i| <∞, we propose the following
approach:

x̂1 = arg min
x∈An,i

f(x), ŵx1
=

f(x̂1)∑
x∈An,i f(x)

,

x̂2 = arg min
x∈An,i\{x̂1}

f(x), ŵx2
=

f(x̂2)∑
x∈An,i f(x)

,

. . . x̂|An,i| ∈ An,i \ {x̂i : i = 1, . . . , |An,i| − 1} and ŵx|An,i|
=

f(x̂|An,i|)∑
x∈An,i f(x)

. (103)

With this we define µ({x̂i}) = ŵx1
· v({i}) for each i ∈ {1, . . . , |An,i|}. Note that µ({x̂i}) ≤ f(x̂i) and

∑
x∈An,i fµ(x) =

v({i}) by construction. If |An,i| = ∞ and
∑
x∈An,i f(x) < ∞, we can follow the same inductive approach than in (103) to

construct µ({x}) for all x ∈ An,i. On the other hand, if |An,i| = ∞ and
∑
x∈An,i f(x) = ∞, then f̃(i) = 1 by definition,

and we can always find µi ∈ Λf such that supp(µi) ∈ An,i. Then, we construct µ({x}) = µi(x) · v({i}), where it is clear
that µ(An,i) = v({i}) and fµ(x) ≤ f(x) for all x ∈ An,i provided by µi ∈ Λf .

E. Proposition 2

Proposition 2: Let us consider a lossy code (fn, gn) and a family of distributions Λ ⊂ P(X ). If we denote by vµn the
probability in In induced by µn ∈ Λn (the n-fold distributions with marginal in Λ) and φn, by vµn({i}) = µn(φ−1

n ({i}))
∀i ∈ In, then

R̄(Λ, fn) = sup
µ∈Λ

(
r(fn, µ

n)− 1

n
Hσ(πn)(µ

n)
)

≥ 1

n
R+({vµn : µ ∈ Λ})

=
1

n
inf

v∈P(In)
sup
µ∈Λ
D(vµn |v)

=
1

n
inf

v∈P(Xn)
sup
µ∈Λ
Dσ(πn)(µ

n|v). (104)

Proof: By definition r(fn, µ
n) = 1

nEXn1 ∼µn {L(Cn(φn(Xn
1 )))}. Consequently, if we let Yn = φn(Xn) in In we

have that Yn ∼ vµn , where vµn denote the probability induced by µn and φn in P(In). We will consider r(Cn, vµn) =
EYn∼vµn {L(Cn(Yn))} = n · r(fn, µn), and as r(Cn, vµn) ≥ H(Yn) [4], for the rest we focus on a refined worst-case
redundancy, attributed to the second stage of fn, given by

R̄(Λ, Cn) := sup
µ∈Λ

(
r(Cn, vµn)−H(vµn)

)
. (105)
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We note that H(vµn) = Hσ(πn)(µ
n), therefore R̄(Λ, fn) = 1

n R̄(Λ, Cn). Considering (105) we have that

R̄(Λ, Cn) ≥ min
C̃n:In→{0,1}∗

sup
µ∈Λ

(
r(C̃n, vµn)−H(vµn)

)
≥ inf
v∈P(In)

sup
µ∈Λ
D(vµn |v)

= R+({vµn : µ ∈ Λ}) = inf
v∈P(Xn)

sup
µ∈Λ
Dσ(πn)(µ

n|v). (106)

The first inequality in (106) is because we are solving the least worst-case redundancy (fixing the first stage of fn), the second
is from the tight connection between prefix-free mappings and probabilities in P(In) and the role of the information divergence
in lossless prefix-free coding [3], and the last equality is from definition of the induced probabilities in P(In) and the identity
in (50). We note that the expression in (106) is the information radius of our n-fold family Λn projected into the sub-sigma
field induced by πn, i.e., first stage of fn.
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