The Redundancy Gains of Almost Lossless Universal Source Coding over Envelope Families

Jorge F. Silva[†] and Pablo Piantanida^{††}

†Universidad de Chile ††CentraleSupélec-CNRS-Université Paris Sud

ISIT 2017 Aachen July 2017

Let $X_1,..,X_n,..$ be a i.i.d. source with values in \mathcal{X} (countable alphabet) equipped with a probability measure $\mu \in \mathcal{P}(\mathcal{X})$.

Lossless Source Coding

For $X_1^n = (X_1,..,X_n) \sim \mu^n$, the problem is to find

$$\underbrace{f_n}_{\textit{prefix free mapping}} \mathcal{X}^n \longrightarrow \underbrace{\cup_{k \geq 1} \left\{0,1\right\}^k}_{\left\{0,1\right\}^*}$$

that mimimizes the rate

$$r(f_n, \mu^n) = \frac{1}{n} \mathbb{E}_{X^n \sim \mu^n} \left(\underbrace{\mathcal{L}(f_n(X^n))}_{\text{length of } f_n(X^n)} \right).$$

Shannon Entropy

$$\lim_{n\to\infty} \min_{f_n\in\mathcal{F}_n} r(f_n,\mu^n) = \mathcal{H}(\mu)$$

Universality

 μ is unknown, but $\mu \in \Lambda \subset \mathcal{P}(\mathcal{X})$.

A Universal Source Code

 $\{f_n : n \ge 1\}$ is strongly minimax universal for Λ if

$$\lim_{n\to\infty} \sup_{\mu\in\Lambda} \left[r(f_n,\mu^n) - \mathcal{H}(\mu) \right] = 0.$$
worse case redundancy

ISIT 2017 AACHEN JULY 2017

Definition

Λ is strongly minimax universal if

$$\lim_{n\to\infty} \min_{f_n\in\mathcal{F}_n} \sup_{\mu\in\Lambda} \left[r(f_n,\mu^n) - \mathcal{H}(\mu) \right] = 0.$$

minimax redundancy per sample

Information Radius of Λ^n

$$\underbrace{\min_{f_n \in \mathcal{F}_n} \sup_{\mu \in \Lambda} \left[r(f_n, \mu^n) - \mathcal{H}(\mu) \right]}_{\text{mini}-\text{max redundancy}} \sim \frac{1}{n} \cdot \underbrace{\min_{v^n \in \mathcal{P}(\mathcal{X}^n)} \sup_{\mu^n \in \Lambda^n} \mathcal{D}(\mu^n | v^n)}_{R^+(\Lambda^n) \equiv}$$

where $\mathcal{P}(\mathcal{X}^n)$ is the set of probability measures in \mathcal{X}^n and $\Lambda^n = \{\mu^n : \mu \in \Lambda\}.$

Information Radius of Λ^n

$$\min_{\substack{f_n \in \mathcal{F}_n \text{ } \mu \in \Lambda \\ mini-max \text{ } redundancy}} \left[r(f_n, \mu^n) - \mathcal{H}(\mu) \right] \sim \frac{1}{n} \cdot \min_{\substack{v^n \in \mathcal{P}(\mathcal{X}^n) \text{ } \mu^n \in \Lambda^n \\ R^+(\Lambda^n) \equiv}} \mathcal{D}(\mu^n | v^n)$$

where $\mathcal{P}(\mathcal{X}^n)$ is the set of probability measures in \mathcal{X}^n and $\Lambda^n = \{\mu^n : \mu \in \Lambda\}.$

The class of memoryless sources indexed by Λ is strongly minimax universal, if and only if,

$$R^+(\Lambda^n)$$
 is $o(n)$.

Background: Finite Alphabet

Finite Alphabet Result

If $|\mathcal{X}| = k$ it is known that^a:

$$\frac{1}{2}(\mathbf{k}-1)\log n - K_1 \leq R^+(\mathcal{P}(\mathcal{X}^n)) \leq \frac{1}{2}(\mathbf{k}-1)\log n + K_2,$$

for some $K_1, K_2 > 0$. Then,

$$R^+(\mathcal{P}(\mathcal{X}^n))$$
 is $O(\log n)$.

^aCsiszar and Shields, Information theory and Statistics: A Tutorial, 2004.

Background: Countable Alphabet

Infeasibility Result

No weak universal source coding scheme is available for the family of memoryless processes^a.

^aJ.C. Kieffer, *A unified approach to weak universal source coding*, IEEE Trans. on IT., 1978.

Gyorfi et al.^a prove that for any $f_n: \mathcal{X}^n \to \{0.1\}^*$ there exists $\mu \in \mathcal{P}_{\mathcal{H}}(\mathcal{X})$ such that $r(f_n, \mu^n) - \mathcal{H}(\mu) = \infty$

$$\Rightarrow R^+(\mathcal{P}_{\mathcal{H}}(\mathcal{X})^n) = \infty,$$

where
$$\mathcal{P}_{\mathcal{H}}(\mathcal{X}) \equiv \{\mu : \mathcal{H}(\mu) < \infty\} \subset \mathcal{P}(\mathcal{X}).$$

^aGyorfi, Pali, and van der Meulen, *There is no universal source code for an infinite source alphabet*, IEEE Trans. on IT.,1994.

Background: Countable Alphabet

Infeasibility Result

No weak universal source coding scheme is available for the family of memoryless processes^a.

^aJ.C. Kieffer, A unified approach to weak universal source coding, IEEE Trans. on IT., 1978.

Gyorfi et al.^a prove that for any $f_n: \mathcal{X}^n \to \{0.1\}^*$ there exists $\mu \in \mathcal{P}_{\mathcal{H}}(\mathcal{X})$ such that $r(f_n, \mu^n) - \mathcal{H}(\mu) = \infty$

$$\Rightarrow R^+(\mathcal{P}_{\mathcal{H}}(\mathcal{X})^n) = \infty,$$

where
$$\mathcal{P}_{\mathcal{H}}(\mathcal{X}) \equiv \{\mu : \mathcal{H}(\mu) < \infty\} \subset \mathcal{P}(\mathcal{X}).$$

^aGyorfi, Pali, and van der Meulen, There is no universal source code for an infinite source alphabet, IEEE Trans. on IT., 1994.

Background: The Envelope Family

$$\Lambda_f \equiv \left\{ \mu \in \mathcal{P}(\mathcal{X}) : \mu(x) \leq \underbrace{f(x)}_{\text{envelop function}} \forall x \right\}$$

Theorem (Boucheron et al. 2009)

Let f be non-negative mapping from $\mathcal X$ to $[0,1]^a$:

- if $f \in \ell_1(\mathcal{X})$ then $\mathcal{R}^+(\Lambda_f^n)$ is o(n).
- ② otherwise, $\mathcal{R}^+(\Lambda_f^n) = \infty$ for all $n \ge 1$.

^aBoucheron, Garivier and Gassiat, *Coding on countably infinite alphabets*, IEEE Trans. on Inf. Th.., 2009

Question

Can we relax the lossless criterion to make universal coding "feasible" for $\mathcal{P}_{\mathcal{H}}(\mathcal{X})$?

^aT. S. Han, Weak variable-lenght source coding, IEEE Tran. on IT.., 2000.

Idea: From lossless to "almost" lossless:

- we relax the lossless block-wise condition
- we consider a zero asymptotic distortion (per sample), using the *Hamming distance* as the distortion.

Question

Can we relax the lossless criterion to make universal coding "feasible" for $\mathcal{P}_{\mathcal{H}}(\mathcal{X})$?

^aT. S. Han, Weak variable-lenght source coding, IEEE Tran. on IT.., 2000.

Idea: From lossless to "almost" lossless:

- we relax the lossless block-wise condition.
- we consider a zero asymptotic distortion (per sample), using the *Hamming distance* as the distortion.

• Let us consider a encoder-decoder pair (f_n, g_n) , with $f_n : \mathcal{X}^n \to \{0, 1\}^*$ and $g_n : \{0, 1\}^* \to \mathcal{X}^n$ and

$$\{x^n:g_n(f_n(x^n))\neq x^n\}\neq\emptyset.$$

• For an information source $X_1^n \sim \mu^n$, the distortion is given by:

$$d(f_n, g_n, \mu) \equiv \mathbb{E}_{X^n \sim \mu^n} \left\{ \rho^{(n)}(X^n, g_n(f_n(X^n))) \right\}$$

where
$$\rho^{(n)}(x^n, y^n) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{\{x_i \neq y_i\}}$$
.

• The rate is:

$$r(f_n, \mu^n) \equiv \frac{1}{n} \mathbb{E}_{X^n \sim \mu^n} \left\{ \mathcal{L}(f_n(X^n)) \right\}.$$

• Let us consider a encoder-decoder pair (f_n, g_n) , with $f_n : \mathcal{X}^n \to \{0, 1\}^*$ and $g_n : \{0, 1\}^* \to \mathcal{X}^n$ and

$$\{x^n: g_n(f_n(x^n)) \neq x^n\} \neq \emptyset.$$

• For an information source $X_1^n \sim \mu^n$, the distortion is given by:

$$d(f_n, g_n, \mu) \equiv \mathbb{E}_{X^n \sim \mu^n} \left\{ \rho^{(n)}(X^n, g_n(f_n(X^n))) \right\}$$

where
$$\rho^{(n)}(x^n, y^n) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{\{x_i \neq y_i\}}$$
.

• The rate is:

$$r(f_n, \mu^n) \equiv \frac{1}{n} \mathbb{E}_{X^n \sim \mu^n} \left\{ \mathcal{L}(f_n(X^n)) \right\}$$

• Let us consider a encoder-decoder pair (f_n, g_n) , with $f_n: \mathcal{X}^n \to \{0,1\}^*$ and $g_n: \{0,1\}^* \to \mathcal{X}^n$ and

$$\{x^n: g_n(f_n(x^n)) \neq x^n\} \neq \emptyset.$$

• For an information source $X_1^n \sim \mu^n$, the distortion is given by:

$$d(f_n, g_n, \mu) \equiv \mathbb{E}_{X^n \sim \mu^n} \left\{ \rho^{(n)}(X^n, g_n(f_n(X^n))) \right\}$$

where
$$\rho^{(n)}(x^n, y^n) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{\{x_i \neq y_i\}}$$
.

• The rate is:

$$r(f_n, \mu^n) \equiv \frac{1}{n} \mathbb{E}_{X^n \sim \mu^n} \left\{ \mathcal{L}(f_n(X^n)) \right\}.$$

Definition 1

 $\Lambda \subset \mathcal{P}(\mathcal{X})$ admits an almost lossless universal source coding scheme, if there is $\{(f_n, g_n) : n \geq 1\}$ such that^a

$$\sup_{\mu \in \Lambda} \lim_{n \to \infty} d(f_n, g_n, \mu) = 0 \quad \text{and} \quad (1)$$

point-wise zero distortion condition

$$\lim_{n\to\infty} \sup_{\mu\in\Lambda} \left[r(f_n,\mu^n) - \frac{H(\mu)}{\mu} \right] = 0.$$
 (2)

worse case redundancy

 $^{^{}a}H(\mu)$ is the minimum achievable rate for the almost lossless source coding, Silva and Piantanida, Th.1, ISIT2016.

Theorem (Silva and Piantanida, 2016)

 $\mathcal{P}_{\mathcal{H}}(\mathcal{X})$ admits an almost lossless universal source coding scheme^a.

^aSilva and Piantanida, Th.2, ISIT2016.

Contribution of this Work

- Revisit the problem of weak USC adopting a stringent condition on the distortion.
- Explore the rates of convergence for the worst-case distortion and redundancy.

Contribution of this Work

- Revisit the problem of weak USC adopting a stringent condition on the distortion.
- Explore the rates of convergence for the worst-case distortion and redundancy.

We will focus on Λ_f .

Outline

Uniform Convergence of the Distortion

Redundancy Gain Analysis for Summable Envelope Families

A stronger notion of week universality is explored....

Definition 2

 $\Lambda \subset \mathcal{P}(\mathcal{X})$ admits a strong almost lossless source coding scheme, if there is $\{(f_n, g_n) : n \geq 1\}$ such that

$$\lim_{n\to\infty} \sup_{\mu\in\Lambda} d(f_n, g_n, \mu) = 0 \text{ and}$$
 (3)

worse-case distortion

$$\lim_{n\to\infty} \sup_{\mu\in\Lambda} \left[r(f_n,\mu^n) - \mathcal{H}(\mu) \right] = 0. \tag{4}$$

Result for Envelope Families

Theorem 1

There exists a strong almost lossless coding scheme for Λ_f if, and only if, $f \in \ell_1(\mathcal{X})$.

Remarks...

- \bullet $f \in \ell_1(\mathcal{X})$ is the same necessary and sufficient condition for the lossless USC (Boucheron et al., 2009).
- lossless scheme, i.e., $\sup_{\mu \in \Lambda} d(f_n, g_n, \mu) = 0$ for all $n \ge 1$.

Remarks...

- \bullet $f \in \ell_1(\mathcal{X})$ is the same necessary and sufficient condition for the lossless USC (Boucheron et al., 2009).
- $oldsymbol{0}$... then if $f \in \ell_1(\mathcal{X})$, the achievability part can be obtained with a lossless scheme, i.e., $\sup_{\mu \in \Lambda} d(f_n, g_n, \mu) = 0$ for all $n \ge 1$.

Question

Can it be gains in redundancy by using a non-zero distortion when $f \in \ell_1(\mathcal{X})$?

Redundancy Gain Analysis for Summable Envelope Families

We say that an almost lossless scheme $\{(f_n, g_n) : n \ge 1\}$ for Λ , in the sense that

$$\lim_{n\to\infty}\sup_{\mu\in\Lambda}d\big(f_n,g_n,\mu\big)=0,$$

offers a gain in minimax redundancy if:

$$\lim_{n\to\infty}\frac{\sup_{\mu\in\Lambda}\left[r(f_n,\mu^n)-\mathcal{H}(\mu)\right]}{\frac{1}{n}R^+(\Lambda^n)}=0.$$

Constraining the Source Alphabet

Let us define the finite set $\Gamma_k \equiv \{1, \dots, k\}$.

A two-stage lossy code of length n and size k_n is given by

- **1** First stage: a lossy mapping (ϕ_n, ψ_n) of size k_n , where
 - $\phi_n: \mathcal{X} \to \Gamma_{k_n}$ and
 - $\psi_n: \Gamma_{k_n} \to \mathcal{X}.$
- ② Second stage: a fixed to variable length prefix-free pair of lossless coder-decoder $(\mathcal{C}_n, \mathcal{D}_n)$, where:
 - $\mathcal{C}_n:\Gamma_k^n o \left\{0,1\right\}^*$ and
 - $\mathcal{D}_n: \{0,1\}^* \to \Gamma^n_{k_n}.$

Given a source $\mathbf{X} = \{X_i\}_{i=1}^{\infty}$ and a (n, k_n) lossy code $(\phi_n, \psi_n, \mathcal{C}_n, \mathcal{D}_n)$ operates as:

$$Y^n = \underbrace{(\phi_n(X_1), \cdots, \phi_n(X_n))}_{\text{Lossy description } \in \Gamma_h^n \text{ (letter by letter)}} \longrightarrow \underbrace{\mathcal{C}_n(Y^n)}_{\in \{0,1\}^*}$$

Constraining the Source Alphabet

Let us define the finite set $\Gamma_k \equiv \{1, \dots, k\}$.

A two-stage lossy code of length n and size k_n is given by:

- First stage: a lossy mapping (ϕ_n, ψ_n) of size k_n , where
 - $\phi_n: \mathcal{X} \to \Gamma_{k_n}$ and
 - $\psi_n: \Gamma_{k_n} \to \mathcal{X}.$
- Second stage: a fixed to variable length prefix-free pair of lossless coder-decoder $(\mathcal{C}_n, \mathcal{D}_n)$, where:
 - $\mathcal{C}_n: \Gamma_{k_n}^n \to \{0,1\}^*$ and
 - $\mathcal{D}_n: \{0,1\}^* \to \Gamma^n_k$.

Given a source $\mathbf{X} = \{X_i\}_{i=1}^{\infty}$ and a (n, k_n) lossy code $(\phi_n, \psi_n, \mathcal{C}_n, \mathcal{D}_n)$

$$Y^n = \underbrace{(\phi_n(X_1), \cdots, \phi_n(X_n))}_{\text{Lossy description } \in \Gamma_{k_n}^n \text{ (letter by letter)}} \longrightarrow \underbrace{\mathcal{C}_n(Y^n)}_{\in \{0,1\}^*}$$

Constraining the Source Alphabet

Let us define the finite set $\Gamma_k \equiv \{1, \dots, k\}$.

A two-stage lossy code of length n and size k_n is given by:

- First stage: a lossy mapping (ϕ_n, ψ_n) of size k_n , where
 - $\phi_n: \mathcal{X} \to \Gamma_{k_n}$ and
 - $\psi_n: \Gamma_{k_n} \to \mathcal{X}.$
- Second stage: a fixed to variable length prefix-free pair of lossless coder-decoder $(\mathcal{C}_n, \mathcal{D}_n)$, where:
 - $\mathcal{C}_n:\Gamma_k^n\to\{0,1\}^*$ and
 - $\mathcal{D}_n: \{0,1\}^* \to \Gamma_k^n$.

Given a source $\mathbf{X} = \{X_i\}_{i=1}^{\infty}$ and a (n, k_n) lossy code $(\phi_n, \psi_n, \mathcal{C}_n, \mathcal{D}_n)$ operates as:

$$Y^n = \underbrace{(\phi_n(X_1), \cdots, \phi_n(X_n))}_{\text{Lossy description } \in \Gamma_{k_n}^n \text{ (letter by letter)}} \longrightarrow \underbrace{\mathcal{C}_n(Y^n)}_{\in \{0,1\}^*}$$

The Induced Partition of the First Stage

Associated to the first stage (ϕ_n, ψ_n)

we have an induced partition of ${\mathcal X}$

$$\pi_n$$
 $\equiv \left\{ \mathcal{A}_{n,i} \equiv \phi_n^{-1}(\{i\}) : i \in \Gamma_{k_n} \right\}$
key design object!

and a set of prototypes

$$\mathcal{Y}_n \equiv \{\psi_n(i) : i \in \Gamma_{k_n}\}.$$

Approximation Quality of (π_n, \mathcal{Y}_n)

Distortion of $(\phi_n, \psi_n, \mathcal{C}_n, \mathcal{D}_n)$ for $X_1^n \sim \mu^n$

Assuming that $\psi_n(i) \in \mathcal{A}_{n,i}$ then:

$$\begin{split} d(\underbrace{\phi_n,\psi_n}_{\textit{first stage}},\mu) &= \mathbb{E}_{X^n \sim \mu^n} \left\{ \rho^{(n)}(X^n,\Psi_n(\Phi_n(X^n))) \right\} \\ &= \mathbb{P}\big(X \neq \psi_n(\phi_n(X))\big) = 1 - \mu(\underbrace{\mathcal{Y}_n}_{\textit{prototypes}}). \end{split}$$

Complexity of π_n

Redundancy of $(\phi_n, \psi_n, \mathcal{C}_n, \mathcal{D}_n)$

The redundancy over $\Lambda \subset \mathcal{P}(\mathcal{X})$ is:

$$R(\phi_n, \mathcal{C}_n, \Lambda^n) \equiv \sup_{\mu \in \Lambda} (r(\phi_n, \mathcal{C}_n, \mu^n) - H(\mu)).$$

It is more tractable to use

$$\bar{R}(\phi_n, \mathcal{C}_n, \Lambda^n) \equiv \sup_{\mu \in \Lambda} \left[r(\phi_n, \mathcal{C}_n, \mu^n) - \mathcal{H}_{\sigma(\pi_n)}(\mu) \right] \geq R(\phi_n, \mathcal{C}_n, \Lambda^n).$$

ISIT 2017 AACHEN JULY 2017

Complexity of π_n

Redundancy of $(\phi_n, \psi_n, \mathcal{C}_n, \mathcal{D}_n)$

The redundancy over $\Lambda \subset \mathcal{P}(\mathcal{X})$ is:

$$R(\phi_n, \mathcal{C}_n, \Lambda^n) \equiv \sup_{\mu \in \Lambda} (r(\phi_n, \mathcal{C}_n, \mu^n) - H(\mu)).$$

It is more tractable to use

$$\bar{R}(\phi_n, \mathcal{C}_n, \Lambda^n) \equiv \sup_{\mu \in \Lambda} \left[r(\phi_n, \mathcal{C}_n, \mu^n) - \mathcal{H}_{\sigma(\pi_n)}(\mu) \right] \geq R(\phi_n, \mathcal{C}_n, \Lambda^n).$$

ISIT 2017 AACHEN JULY 2017

Complexity of π_n

Fixing the first stage (i.e., π_n), the minimax code is

$$\mathcal{C}_n^\star \equiv \arg \min_{\substack{\mathcal{C}^n: \Gamma_{k_n}^n \to \{0,1\}^\star \\ }} \bar{R}(\phi_n, \mathcal{C}_n, \Lambda^n), \text{ for all } n \geq 1.$$

in this Lossy Setting

$$\min_{\mathcal{C}^{n}:\Gamma_{k_{n}}^{n}\to\{0,1\}^{*}}\sup_{\mu\in\Lambda}\left[r(\phi_{n},\mathcal{C}_{n},\mu^{n})-\mathcal{H}_{\sigma(\pi_{n})}(\mu)\right]$$

$$\sim\frac{1}{n}\times\underbrace{\min_{\boldsymbol{v}^{n}\in\mathcal{P}(\mathcal{X}^{n})}\sup_{\mu^{n}\in\Lambda^{n}}\mathcal{D}_{\sigma(\pi_{n}\times..\times\pi_{n})}(\mu^{n}|\boldsymbol{v}^{n})}_{R^{+}(\Lambda^{n},\sigma(\pi_{n}))\equiv}$$

where
$$\mathcal{D}_{\sigma(\pi)}(\mu|v) \equiv \sum_{\mathcal{A} \in \pi} \mu(\mathcal{A}) \log_2 \frac{\mu(\mathcal{A})}{v(\mathcal{A})}$$
.

ISIT 2017 AACHEN JULY 2017 22/

... at the end

distortion

$$\sup_{\mu \in \Lambda} d(\phi_n, \psi_n, \mu) = \sup_{\mu \in \Lambda} (1 - \mu(\mathcal{Y}_n))$$

overhead

$$\sup_{\mu \in \Lambda} \left[r(\phi_n, \mathcal{C}_n^{\star}, \mu^n) - \mathcal{H}_{\sigma(\pi_n)}(\mu) \right] \sim \frac{1}{n} R^+(\Lambda^n, \frac{\sigma(\pi_n)}{\sigma(\pi_n)})$$

The Tail-based partition

$$\tilde{\pi}_{k_n} = \{\{1\}, \{2\}, ..., \{k_n - 1\}, \Gamma_{k_n - 1}^c\}$$

$$\tilde{\mathcal{Y}}_n = \{1, ..., k_n\}$$

The Tail-based partition

distortion

$$\sup_{\mu \in \Lambda_f} d(\tilde{\phi}_n, \tilde{\psi}_n, \mu^n) \leq \sup_{\substack{\mu \in \Lambda_f \\ \text{eventually in } n \text{ if } k_n \to \infty}} f(x)$$

overhead

minimax redundacy
$$\sim \frac{1}{n}R^+(\Lambda_f^n, \sigma(\tilde{\pi}_{k_n}))$$

Determine regimes on $(k_n)_{n\geq 1}$ that guarantee a gain in minimax redundancy in the sense that:

$$\lim_{n\to\infty}\frac{R^+(\Lambda_f^n,\sigma(\tilde{\pi}_{k_n}))}{R^+(\Lambda_f^n)}=0$$

subject to $(1/k_n)$ being $o(1) \Leftrightarrow \lim_n \sup_{\mu \in \Lambda_f} d(\tilde{\phi}_n, \tilde{\psi}_n, \mu^n) = 0$.

Theorem 2

For Λ_f with $f \in \ell_1(\mathcal{X})$ there exists a critical sequence of non decreasing integers $u_f^*(n)$ such that:

• if $k_n \ge u_f^*(n)$, eventually with n, then

$$\lim_{n\to\infty}\frac{R^+(\Lambda_f^n,\sigma(\tilde{\pi}_{k_n}))}{R^+(\Lambda_f^n)}=1.$$

• conversely, if $k_n/u_f^*(n) \longrightarrow 0$, then

$$\lim_{n\to\infty}\frac{R^+(\Lambda_f^n,\sigma(\tilde{\pi}_{k_n}))}{R^+(\Lambda_f^n)}=0.$$

Remarks about $u_f^*(n)$:

- $u_f^*(n)$ is fully determined by the envelope function f.
- $u_f^*(n) \to \infty$ and $u_f^*(n)$ is o(n/log n)
- furthermore $R^+(\Lambda_f^n) \approx (u_f^*(n) 1) \log n$.

^aBontemps, Boucheron, and Gassiat, About adaptive coding on countable alphabets, IEEE Trans. on Inf. Th., 2014.

Remarks about Λ_f

① the complexity of $\{\Lambda_f^n : n \geq 1\}$ is captured asymtotically by a finite (but dynamic) alphabet projection $\{\Lambda_{\epsilon}^{n}/\sigma(\tilde{\pi}_{k_{n}}), n \geq 1\}$ where

$$\Lambda_f^n/\sigma(\tilde{\pi}_{k_n}) = \{\mu^n/\sigma(\tilde{\pi}_{k_n} \times \cdots \times \tilde{\pi}_{k_n}) : \mu \in \Lambda_f\},\,$$

with
$$\mu/\sigma(\pi) = {\mu(A) : A \in \sigma(\pi)}.$$

 $\{\tilde{\pi}_{k_n}\}$ is optimal in the sense of achieving the information radius of $\{\Lambda_{\mathfrak{f}}^n: n \geq 1\}$ with minimum size.

Power Law Envelope

$$f_{\alpha}(x) = \min\{1, 1/x^{\alpha}\} \text{ for } \alpha > 2 \text{ then } u_f^*(n) \text{ is } O(n^{1/(\alpha-1)}).$$

Exponential Envelope

$$f_{\alpha}(x) = \min\{1, Ce^{-\alpha x}\}\ \text{for } \alpha > 0 \text{ then } u_f^*(n) \text{ is } \frac{1}{\alpha}\log n + O(1).$$

The gain regime: the argument follows from Bontemps et al. [Th. 2] and Boucheron et al. [Th. 4]¹².

Elements:

•
$$(1+o(1))\frac{(u_f^*(n)-1)}{4}\log n \le R^+(\Lambda_f^n) \le 2+\log e + \frac{u_f^*(n)-1}{2}\log n$$

•
$$R^+(\Lambda_f^n, \sigma(\tilde{\pi}_{k_n})) \leq \frac{k_n-1}{2} \log n + K$$

¹Bontemps, Boucheron, and Gassiat, About adaptive coding on countable alphabets, IEEE Trans. on Inf. Th., 2014

²Boucheron, Garivier, and Gassiat, Codign on countable infininite alphabets, IEEE Trans on Inf. Th. 2009.

 $k_n \ge u_f^*(n)$: We use ideas and results from Haussler and Opper³. Elements:

- Metric entropy: $H_{\epsilon}(\Lambda) \equiv \ln \mathcal{D}_{\epsilon}(\Lambda)$.
- Haussler et al. (Lemma 8) shows that:

$$R^+(\Lambda^n) \geq \log(e) \cdot \sup_{\epsilon > 0} \min \left\{ \mathcal{H}_{\epsilon}(\Lambda), \frac{n\epsilon^2}{8} \right\} - 1.$$

• if $\epsilon_{\Lambda n}^* = \inf \{ \epsilon > 0 : \mathcal{H}_{\epsilon}(\Lambda) \leq \frac{n\epsilon^2}{8} \}$, we have that

$$R^+(\Lambda^n) \geq \log(e) \cdot \mathcal{H}_{\epsilon_{\Lambda,n}^*}(\Lambda) - 1$$

Jorge F. Silva[†] and Pablo Piantanida[†]The Redundancy Gains of Almost Loss

³Haussler and Opper, Mutual information, metric entropy and comulative relative entropy rsik, The Annals of Statistics, 1997.

 $k_n \ge u_f^*(n)$: We use ideas and results from Haussler and Opper⁴. Elements:

- Metric entropy: $H_{\epsilon}(\Lambda) \equiv \ln \mathcal{D}_{\epsilon}(\Lambda)$.
- Haussler et al. (Lemma 8) shows that:

$$R^+(\Lambda^n) \geq \log(e) \cdot \sup_{\epsilon > 0} \min \left\{ \mathcal{H}_{\epsilon}(\Lambda), \frac{n\epsilon^2}{8} \right\} - 1.$$

• if $\epsilon_{\Lambda,n}^* = \inf \left\{ \epsilon > 0 : \mathcal{H}_{\epsilon}(\Lambda) \leq \frac{n\epsilon^2}{8} \right\}$, we have that

$$\liminf_{n} R^{+}(\Lambda^{n}) \geq \log(e) \cdot \liminf_{n} \mathcal{H}_{\epsilon_{\Lambda,n}^{*}}(\Lambda) - 1$$

Jorge F. Silva[†] and Pablo Piantanida^{††}The Redundancy Gains of Almost Lossi

⁴Haussler and Opper, Mutual information, metric entropy and cumulative relative entropy risk, The Annals of Statistics, 1997.

 $k_n \ge u_f^*(n)$: We use ideas and results from Haussler and Opper⁵. Elements:

- Metric entropy: $H_{\epsilon}(\Lambda) \equiv \ln \mathcal{D}_{\epsilon}(\Lambda)$.
- Haussler et al. (Lemma 8) shows that:

$$R^+(\Lambda^n) \geq \log(e) \cdot \sup_{\epsilon > 0} \min \left\{ \mathcal{H}_{\epsilon}(\Lambda), \frac{n\epsilon^2}{8}
ight\} - 1.$$

• if $\epsilon_{n,k}^* = \inf \left\{ \epsilon > 0 : \mathcal{H}_{\epsilon}(\Lambda_{\tilde{f}_k}) \leq \frac{n\epsilon^2}{8} \right\}$, we have that

$$\liminf_n R^+(\Lambda^n_{\tilde{f}_{k_n}}) \geq \log(e) \cdot \liminf_n \mathcal{H}_{\epsilon^*_{n,k_n}}(\Lambda_{\tilde{f}_{k_n}}) - 1$$

Jorge F. Silva[†] and Pablo Piantanida[†]The Redundancy Gains of Almost Lossi

ISIT 2017 AACHEN .

⁵Haussler and Opper, Mutual information, metric entropy and cumulative relative entropy risk, The Annals of Statistics, 1997.

• Proposition 1 presents sufficient conditions on (ϵ_n) and (k_n) such that:

$$\lim_{n o\infty}rac{\mathcal{H}_{\epsilon_n}(\Lambda_{ ilde{f}_{k_n}})}{\mathcal{H}_{\epsilon_n}(\Lambda_f)}=1$$

for
$$(k_n) \to \infty$$
 and $(\epsilon_n) \to 0$

• Proposition 2 presents sufficient conditions on (k_n) such that:

$$\lim_{n o \infty} rac{R^+(\Lambda^n_{ ilde{f}_{k_n}})}{R^+(\Lambda^n_f)} = 1.$$

Summary

- We revisit the problem of almost lossless universal source coding.
- Using a uniform convergence of the distortion to zero, we obtain the same necessary and sufficient condition of the lossless case.
- For $f \in \ell_1(\mathcal{X})$, it is feasible to obtain redundancy gain with respect to the minimax lossless solution.
- The complexity of $\{\Lambda_f^n, n \geq 1\}$ is achieved by finite alphabet projections $\{\Lambda_f^n/\sigma(\tilde{\pi}_{k_n}), n \geq 1\}$, where the critical size (dimension) of the projected family is given by $\{u_f^*(n): n \geq 1\}$.

