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Background: Universal Source Coding

Let Xi,..,Xp,.. be a i.i.d. source with values in X’ (countable alphabet)
equipped with a probability measure u € P(X).

Lossless Source Coding

For X]! = (X, .., Xp) ~ u", the problem is to find

o X" — U1 {0,1}*
N~~~ N———
prefix free mapping

{o,1}"

that mimimizes the rate

F(Foy 1™ = 2Exoon( L(E(X™) ).
n N ——

length of f,(X")
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Background: Universal Source Coding

Shannon Entropy

lim min r(fo, 1) = H(w)

n—oo f,eF,
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Background: Universal Source Coding

Universality
 is unknown, but p € A C P(X).

A Universal Source Code
{fy : n > 1} is strongly minimax universal for A if
lim sup [r(fp, u") — H(p)] = 0.

n—00 HEN

J

-~

worse case redundancy
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Background: Universal Source Coding

Definition
N is strongly minimax universal if
lim min sup [r(fp, u") — H(p)] = 0.

n—oo f,eFn, HEN

J

Vv
minimax redundancy per sample
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Background: Universal Source Coding

Information Radius of A”

1
min sup |r(f,, u") — H ~ =+ min sup D(u"|v"
mini—max‘:edundancy R+E/(")E

where P(X") is the set of probability measures in X' and
AN ={p": p e}
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Background: Universal Source Coding

Information Radius of A"

1
min sup |r(f,, u") — H ~ =+ min sup D(u"|v"
mini —max‘:edundancy R+ (‘/(" )=

where P(X") is the set of probability measures in X' and
AN ={p": p e}

The class of memoryless sources indexed by A is strongly minimax
universal, if and only if,

RT(A™) is o(n).
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Background: Finite Alphabet

Finite Alphabet Result
If |[X| = k it is known that?:

1
E(k —1)logn— K; < RT(P(X™) < =(k —1)logn + K,

N

for some K1, K> > 0. Then,

RT(P(Xx")) is O(log n).

?Csiszar and Shields, Information theory and Statistics: A Tutorial, 2004.
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Background: Countable Alphabet

Infeasibility Result

No weak universal source coding scheme is available for the family of
memoryless processes?.

?J.C. Kieffer, A unified approach to weak universal source coding, |EEE
Trans. on IT., 1978.
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Background: Countable Alphabet

Infeasibility Result

No weak universal source coding scheme is available for the family of
memoryless processes?.

?J.C. Kieffer, A unified approach to weak universal source coding, |EEE
Trans. on IT., 1978.

Gyorfi et al.? prove that for any f, : X" — {0.1}" there exists u € Py(X)
such that r(f,, u") — H(u) = oo

= RY(Pu(X)") = oo,

where Py (X) = {p: H(p) < oo} C P(X).

?Gyorfi, Pali, and van der Meulen, There is no universal source code for an
infinite source alphabet, |IEEE Trans. on IT.,1994.
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Background: The Envelope Family

N =S peP(X):p(x) < f(x) Vx
-

envelop function

Theorem (Boucheron et al. 2009)

Let £ be non-negative mapping from X to [0, 1]°:
Q if f € (1(X) then RT(A?) is o(n).
@ otherwise, RT(A?) = oo for all n > 1.

“Boucheron, Garivier and Gassiat, Coding on countably infinite alphabets,
IEEE Trans. on Inf. Th.., 2009
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Background: Weak Source Coding

Question

Can we relax the lossless criterion to make universal coding “feasible” for
Py (X)?2

°T. S. Han, Weak variable-lenght source coding, |IEEE Tran. on IT.., 2000.
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Background: Weak Source Coding

Question

Can we relax the lossless criterion to make universal coding “feasible” for
Py (X)?2

°T. S. Han, Weak variable-lenght source coding, |IEEE Tran. on IT.., 2000.

Idea: From lossless to “almost” lossless:

@ we relax the lossless block-wise condition.

@ we consider a zero asymptotic distortion (per sample), using the
Hamming distance as the distortion.
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Background: Weak Source Coding

o Let us consider a encoder-decoder pair (f,, g,), with
fn: X" — {0,1}" and g, : {0,1}* — X" and

{x": gn(fa(x")) # x"} # 0.
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Background: Weak Source Coding

o Let us consider a encoder-decoder pair (f,, g,), with
fn: X" — {0,1}" and g, : {0,1}* — X" and

{x": gn(fa(x")) # x"} # 0.

@ For an information source X{" ~ 1", the distortion is given by:
d(f,,,g,,, :u) = ]EX"N/M’ {p(n)(Xn’ gn(fn(Xn)))}

where p("(x", y") = %27:1 Loyt
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Background: Weak Source Coding

o Let us consider a encoder-decoder pair (f,, g,), with
fn: X" — {0,1}" and g, : {0,1}* — X" and

{x" - ga(fa(x")) # x"} # 0.
@ For an information source X{" ~ 1", the distortion is given by:
d(fmgna :u) = ]EX"N/L” {p(n)(Xn’ gn(fn(Xn)))}

where p(")(x", y") = %27:1 Loyt
@ The rate is:

r(fo, 1) =

S|

Exnpn {L{fa(X"))} -
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Background: Weak Source Coding

Definition 1

A C P(X) admits an almost lossless universal source coding scheme, if
there is {(fn,gn) : n > 1} such that?

sup lim d(f,,gnp) =0 and (1)
MEA n—oo
point—wise zero ;’ristortion condition
q n _
Aim, sup [r(fay ™) = H(w)] = 0. (2)

worse case redundancy

?H(p) is the minimum achievable rate for the almost lossless source coding,
Silva and Piantanida, Th.1, I1SIT2016.
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Background: Weak Source Coding

Theorem (Silva and Piantanida, 2016)

P (X) admits an almost lossless universal source coding scheme?.

“Silva and Piantanida, Th.2, ISIT2016.
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Contribution of this Work

@ Revisit the problem of weak USC adopting a stringent condition on
the distortion.

@ Explore the rates of convergence for the worst-case distortion and
redundancy.
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Contribution of this Work

@ Revisit the problem of weak USC adopting a stringent condition on
the distortion.

@ Explore the rates of convergence for the worst-case distortion and
redundancy.

We will focus on Ar. J
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Outline

@ Uniform Convergence of the Distortion

e Redundancy Gain Analysis for Summable Envelope Families
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A stronger notion of week universality is explored....

Definition 2

A C P(X) admits a strong almost lossless source coding scheme, if there
is {(fn,gn) : n > 1} such that

lim supd(f,,,g,,, @) =0 and (3)
n—=00 e

|

worse—case distortion
lim SUP[ (fo, u") — H(p)] = 0. (4)
n OO/.L
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Result for Envelope Families




Theorem 1

There exists a strong almost lossless coding scheme for A¢ if, and only if,
felti(X).
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Remarks...

Q f € ¢1(X) is the same necessary and sufficient condition for the
lossless USC (Boucheron et al., 2009).

@ ... then if f € ¢1(X), the achievability part can be obtained with a
lossless scheme, i.e., sup,cp d(f, g, ) = 0 for all n > 1.
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Remarks...

Q@ f € (1(X) is the same necessary and sufficient condition for the
lossless USC (Boucheron et al., 2009).

@ ... then if f € ¢1(X), the achievability part can be obtained with a
lossless scheme, i.e., sup,cp d(f, g, ) = 0 for all n > 1.

Question

Can it be gains in redundancy by using a non-zero distortion when
fe fl(X)?
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Redundancy Gain Analysis for
Summable Envelope Families
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We say that an almost lossless scheme {(7,, gn) : n > 1} for A, in the
sense that

lim sup d(fn, gn, 1) =0,
A

n—00 e

offers a gain in minimax redundancy if:

supen [rlfo, 1) = H(w)] _

nl'j;o %R+(A")
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Constraining the Source Alphabet
Let us define the finite set 'y ={1,..., k}.
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Constraining the Source Alphabet
Let us define the finite set I'y = {1,..., k}.

A two-stage lossy code of length n and size k, is given by:

Q First stage: a lossy mapping (¢n, 1) of size k,, where
¢n: X =Ty, and
2/},, : Fkn — X.
© Second stage: a fixed to variable length prefix-free pair of lossless
coder-decoder (Cp, Dp), where:
Cp:Ti —{0,1}" and
D,:{0,1}* =T} .
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Constraining the Source Alphabet
Let us define the finite set I'y = {1,..., k}.

A two-stage lossy code of length n and size k, is given by:

Q First stage: a lossy mapping (¢n, 1) of size k,, where
¢n: X =Ty, and
@b,, : Fkn — X.
© Second stage: a fixed to variable length prefix-free pair of lossless
coder-decoder (Cp, Dp), where:
Cp:Ti —{0,1}" and
D,:{0,1}* =T} .

Given a source X = {X;}72; and a (n, k,) lossy code (¢n, ¥, Cn, Dn)
operates as:

Y= (¢H(X1)7 e 7¢n(Xn)) - Cn(Yn)
N Vv
Lossy description €I} (letter by letter) e{0,1}*
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The Induced Partition of the First Stage

Associated to the first stage (¢, ¥n)

we have an induced partition of X’

T, ={Ai=e )i ek}

key design object!

and a set of prototypes

Yn={n(i) i €T, }-

, ISIT 2017 AACHEN JuLy 2017 19 /
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Approximation Quality of (7, V,)

Distortion of (¢n, s, Cp, D,) for X[ ~ p”
Assuming that ¢ (i) € A, ; then:

_ o (n)(yn n
A Gy, 1) = Excnyn { V(X7 W(00(X7))) }
first stage

= P(X # (8 00) =1 = Y, ).
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Complexity of m,

Redundancy of (¢,, Vs, Cp, D,)
The redundancy over A C P(X) is:

R(¢n,Cn, \") = sup (r(d)nacmﬂn) - H(ﬂ))-
HEN
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Complexity of m,

Redundancy of (¢,, Vs, Cp, D,)
The redundancy over A C P(X) is:

R(¢n,Cn, \") = sup (r(d)mcn,ﬂn) - H(,U*))'
PEN

It is more tractable to use

R(¢na Cna /\n) = S"él/)\ [r(¢n, Cna ,un) - /Hcr(ﬂn)(u)] = R(d),,,C,,, An)'
iz
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Complexity of m,

Fixing the first stage (i.e., 7,), the minimax code is

Cr=a i R(én,Cn, A"), for all n > 1.
" rgcn:rg:nigo,l}* (0 ), forall n =

in this Lossy Setting

min sup |r(¢n, Cny 1) — Ho(r,
C":FZ"%{O,I}*MGR[ (&0, Cny 1) = Moy (18)]

1
~ — X min sup D n,n
n V"e’P(Xn)H"ERn U(”"X”X”")('M v?)

R+(A",0(mn))=

where DO’(ﬂ') (“| V) = ZAEW M(A) |0g2 l\jéj) )

N—
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. at the end

distortion

sup d(d)na Pn, M) = sup(l - N(yn))
HEN HEN

overhead

* N 1 n
sup [r(¢nacna/~1‘ ) - Ha(ﬂ'n)(:u’)] ~ _R+(A 70-(7‘-”))
HEN n
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The Tail-based partition

Tky = {{1} > {2} IR {kn - 1} ) rin—l}

j>n = {17 i kl‘l}
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The Tail-based partition

distortion
sup d(¢n, ¥n, ") < sup u(F) = > f(x)
He/\f /er f X>k"
eventually irTn if kn—o0
overhead

1
minimax redundacy ~ ;RJ“(/\’,Z,U(frkn))

ISIT 2017 AACHEN JuLy 2017
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Determine regimes on (k,)n>1 that guarantee a gain in minimax
redundancy in the sense that:

i REALa(,))

n—o0 RJF(/\?) =0

subject to (1/kp) being o(1) < lim,sup,,cx, d(Gp, Pn, 1) =0
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Theorem 2

For Ar with f € /1(X') there exists a critical sequence of non decreasing
integers vz (n) such that:

o if k, > uf(n), eventually with n, then

RT (A7 0(Rk)) _

AN TTRAAD T
e conversely, if k,/u;(n) — 0, then
R+ (AL, o (7
im R AR o(Fa)) g

n—00 R+( 'f7)
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Remarks about u(n):?
@ uf(n) is fully determined by the envelope function f.
@ uf(n) = oo and ui(n) is o(n/logn)
@ furthermore R*(A?) =~ (uf(n) — 1) log n.

?Bontemps, Boucheron, and Gassiat, About adaptive coding on countable
alphabets, |IEEE Trans. on Inf. Th., 2014.
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Remarks about Af

@ the complexity of {A7 : n > 1} is captured asymtotically by a finite
(but dynamic) alphabet projection {A?/o(7x,),n > 1} where

N3 fo(ky) = {0 (e, % -+ X ) 2 1 € Mg},

with p/o(m) = {u(A) : A€ o(m)}.
@ {7k, } is optimal in the sense of achieving the information radius of
{A? : n > 1} with minimum size.
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Power Law Envelope
fo(x) = min {1,1/x%} for a > 2 then u}(n) is O(n/(@=1).

Exponential Envelope
fa(x) = min {1, Ce=**} for a > 0 then u}(n) is L logn+ O(1).

ISIT 2017 AACHEN JuLy 2017 307/
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Elements of the Proof

The gain regime: the argument follows from Bontemps et al. [Th. 2] and
Boucheron et al. [Th. 4]'2

Elements:
o (1+ 0(1))W logn < RT(A7) <2+ loge+ % log n
o RT(A,0(7y,)) < *Llogn+ K

lBontemps, Boucheron, and Gassiat, About adaptive coding on countable alphabets, IEEE
Trans. on Inf. Th., 2014

2Boucheron, Garivier, and Gassiat, Codign on countable infininite alphabets, IEEE Trans on
Inf. Th, 2009.
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Elements of the Proof

kn > uf(n): We use ideas and results from Haussler and Opper>.

Elements:
o Metric entropy: He(A) = InD(N).

o Haussler et al. (Lemma 8) shows that:

2
RT(A") > log(e) - sup min {’He(/\), ne} -1
>0 8

o if ep , = inf {e>0:H(N) < ”762} we have that

R¥(A") > log(e) - He; () — 1

3Haussler and Opper, Mutual information, metric entropy and comulative relative entropy

rsik, The Annals of Statistics, 1997.
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Elements of the Proof

kn > uf(n): We use ideas and results from Haussler and Opper®.
Elements:

o Metric entropy: He(A) = InD(N).

o Haussler et al. (Lemma 8) shows that:

2
RT(A™) > log(e) - sup min {7—[6(/\), ne} - 1.
e>0 8

o if €y , = inf {e>0:H(N) < ’%2} we have that

liminf R*(A") > log(e) - liminf H.: (A) -1

*Haussler and Opper, Mutual information, metric entropy and cumulative relative entropy
risk, The Annals of Statistics, 1997.
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Elements of the Proof

kn > uf(n): We use ideas and results from Haussler and Opper®.
Elements:

e Metric entropy: H.(A) = InD(N).

o Haussler et al. (Lemma 8) shows that:

2
RT(A™) > log(e) - sup min {Hg(/\), ne} —1.
e>0 8

o if ;= inf{c>0:H(A;) < "}, we have that

. . + n
I|mn:7fR (/\fkn)zlog(e) I|m|nf7-[ n( fkn)_l

5Haussler and Opper, Mutual information, metric entropy and cumulative relative entropy

risk, The Annals of Statistics, 1997.
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Elements of the Proof

@ Proposition 1 presents sufficient conditions on (€,,) and (k,) such that:

I m Hen(/\ﬁ( )
|
n—oo H (/\f)

for (kn) — oo and (ep) — 0

@ Proposition 2 presents sufficient conditions on (k,) such that:

+
lim i (A?k") =1
n—o00 R+(/\n)
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Summary

o We revisit the problem of almost lossless universal source coding.

@ Using a uniform convergence of the distortion to zero, we obtain the
same necessary and sufficient condition of the lossless case.

o For f € {1(X), it is feasible to obtain redundancy gain with respect to
the minimax lossless solution.

@ The complexity of {AZ, n > 1} is achieved by finite alphabet
projections {Af/o(7,), n > 1}, where the critical size (dimension) of
the projected family is given by {uf(n):n > 1}.
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