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Applications

@ Remote sensors: learning under communication constraint

o Fixed-rate universal lossy source coding (FR-USC)
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constraint (in bits-per-sample)

FR-USC: Raginsky joint coding and modeling
@ Raginsky IEEE IT 2008°, introduced a connection between
FR-USC and consistent density estimation under the
ZERO-rate regime.

@ ZERO-rate consistent estimation = weakly mini-max
universal lossy source coding.

@ Results obtained for bounded parametric family of densities
under some “learnability” and “regularity conditions”.

?IEEE Trans. on IT,vol 54, no 7, pp. 3059-3077, 2008
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Contributions of this Work

o Necessary and sufficient conditions for “ZERO-rate" density
estimation

@ non-parametric families covered (L;-totally bounded)

@ concrete coding scheme proposed for the achievability part
(Skeleton estimate by Yatracos, 1985)

o optimality of the skeleton used to derive rate of convergence
results




Density Estimation

Basic Definitions

Let X C RY, and let P(X) be the collection of probability
measures in (X, B(X)).

Definition: Total Variation

For v and p in P(X) the total variational distance is

V(u,v) = sup |u(A) = v(A). (1)
AEB(X)

...when the measures have densities:

Vi) = 5 [ |50 - F00] are, )




Density Estimation

Let F = {up: 0 € ©} C AC(X) be an indexed collection of
interest.

Learning Rule

A (n, M)-learning rule of length n and size M is a pair (f, ¢), with
f:X"—Sand ¢:S — O, where |S| =M.

o m=¢of:X"— O defines its explicit learning rule,
o {¢(s) : s € S} C O defines its codebook,

o R(m) = log,(|S|)/n defines its rate of the rule in
bits-per-sample.




Density Estimation

Let F = {up: 0 € ©} C AC(X) be an indexed collection of
interest.

Learning Scheme

A finite description learning scheme 1 with rate sequence (Rp)n>1
is a collection of learning rules M = {(f,, ¢n) : n > 1} such that

R(my) = Ry, for all n > 1. (3)




Density Estimation

Let F = {up: 0 € ©} C AC(X) be an indexed collection of
interest.

Definition: R-rate consistent estimate
The rate R > 0 is asymptotically achievable for F, if, if there is a
scheme M = {(fy, ¢pn) : n > 1}, with limsup,_, . R(7,) < R and

limp_ o0 sup EPfL(V(Mwn(Xl”)v :U')) =0. (4)
HEF

@ [1is an R-rate uniformly consistent estimate for F.




Coding Theorem
[ 1]

The Coding Theorem

Totally Bounded Classes

F is Li-totally bounded if Ve > 0, there is a finite covering
Ge={wi:i=1,..,N} in F such that

N
FC U BY (1), (5)

withBev(,u)E{ve.AC -2f‘ x) — 9¢( )‘dA() e} is
the Ly ball of radius € centered at pu.




Coding Theorem
[ 1]

The Coding Theorem

Totally Bounded Classes

F is Li-totally bounded if Ve > 0, there is a finite covering
Ge={wi:i=1,..,N} in F such that

N
Fc|JBY(u), (5)

IS

with Bev(,u)E{VGAC .Zf‘ )‘dA( )<e}is
the Ly ball of radius € centered at pu.

| A

Definitions

o Let /. denotes the smallest integer that achieves (5).

o /C(€) = log,(N,) denotes the Kolmogorov's e-entropy of F.




Coding Theorem
oe

The Coding Theorem

There is a “ZERO-rate” uniformly consistent scheme 1 for the
class F if, and only if, F is “L;-totally bounded".




Achievability

|dea of the proof:
Encoding

fin (empirical distribution)
i7 = argminieqia,. oy d(fin, o) = fo(X7)

—
(b].) b27 MR bnR)




Achievability

|dea of the proof:
Encoding

» (empirical distribution)

it = argminjeq o, oy d(fin, pog) = Fo(XT)

Decoding

gi*_)ﬁ:ugi*egs



Coding Theorem
@000

Achievability

|dea of the proof:
Encoding

fin (empirical distribution)
~—

i7 = argminieqia,. oy d(fin, o) = fa(X7)

Decoding

V(u, ii) Approximation Error
Error Analysis:  V/(u, i)
N V/(ji, ji) Estimation Error

fi = argminy, eg. V(i p1gs) is the ORACLE solution
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Achievability

the skeleton estimate (Yatracos, 1985)

1. Let G. = {y,gie =1, N€} denote the e-skeleton of F.
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Coding Theorem
[e] Tele]
Achievability

the skeleton estimate (Yatracos, 1985)

1. Let G. = {y,gie =1, N€} denote the e-skeleton of F.
2. Let ©, = {65 :i=1,.., N} the index set of G in ©.
3. Let us define the Yatracos class of G, by

A = {AfJ,Aj7,:1§i<j§ Ne}7With:

o dusg . b
A,-J:{xGX. N (x) > 5y (x) p CX.



Coding Theorem
[e] Tele]

Achievability

the skeleton estimate (Yatracos, 1985)

1. Let G. = {y,gie =1, N€} denote the e-skeleton of F.
2. Let ©, = {65 :i=1,.., N} the index set of G in ©.
3. Let us define the Yatracos class of G, by

A= {A A1 <i << N with:

d e duge
A,ﬁjz{xex 1o, > }CX.

o X)) > ()

4. Minimun distance estimate:

(Xl)_arg m|n sup ‘,uge(B) fin(B)
G e BeA

i

with fi, the standard empirical measure.
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Achievability

Estimation-approximation error bound

Theorem (Yatracos, 1985)

V{#5.0) 1) < 3 min Vv, p) + 4 sup [in(B) = u(B)]-




Coding Theorem
[e]e] o]

Achievability

Estimation-approximation error bound

Theorem (Yatracos, 1985)

V{#5.0) 1) < 3 min Vv, p) + 4 sup [in(B) = u(B)]-

Estimation error:

Theorem (from Hoeffding's Inequality, 1963)

N log(2/N,2
Er; ( sup 17(8) ~ u(B)]) < /B0 v 0, v
BeA. 2n
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Achievability

Estimation-approximation error bound

Theorem (Yatracos, 1985)

V{#5.0) 1) < 3 min Vv, p) + 4 sup [in(B) = u(B)]-

Then, SUpue]-‘EIP’fL {V(Née(xln)nu)} < 3€—|—\/wsl\l€2), foralle >0




Coding Theorem
[e]e] o]

Achievability

Estimation-approximation error bound

Theorem (Yatracos, 1985)

V{#5.0) 1) < 3 min Vv, p) + 4 sup [in(B) = u(B)]-

Then, SUpue]-‘EIP’fL {V(Néc(xln)nu)} < 36—|—\/w3’\l€2), foralle >0

Considering = inf {e¢ > 0: log(2N?) < y/n} (Devroye and

Lugosi (1985))

lim sup Epn {V(“ée;;(xl")’“)} =0

n—oo Ne}-

Mée;; (x7) uniformly consistent estimate in F.




Coding Theorem
[e]e]e] ]

Achievability

The learning scheme

@ Coding function:

Foc(x) = arg _min  sup |uge(B) — fin(B)
ie{1,.,Ne} Be A, !

@ Decoding function: $n75(i) =0f€ 0. CO.



Coding Theorem
[e]e]e] ]

Achievability

The learning scheme

@ Coding function:

hre(x0) = arg_min  sup |yugr(B) — fin(B)|
’6{17"aN6}B€A5 '

@ Decoding function: $n75(i) =0f€ 0. CO.

Then the Scheme M1(( )nz1) = {(?n,eﬁ,a)n@:) s 1} is

uniform consistent for F

the rate is R(q@n,ez o IA‘n,eﬁ) — Lely) O(1/v/n)

n

OJ




Yatracos Classes

Definition

The Yatracos class of F be, Ag = {Ae,e‘ 10,0 € ©,0 # 5}, with
Agg = {x € X dug/d\(x) > dug/dA(x)} € B(X).




Yatracos Classes

The Yatracos class of F be, Ag = {Ae,e‘ 10,0 € ©,0 # 5}, with
Agg = {x € X dug/d\(x) > dug/dA(x)} € B(X).

| A\

Theorem 2
Let us assume that:
i) F is totally bounded,
ii) Ag has a finite Vapnik and Chervonenkis dimension
iii) and logy (N, /) is o(n).
Then, the skeleton scheme [1((1/1/n),>1) has ZERO-rate and

sup Exg { V(g xgyr )| Ts OCL/V/) (6)

ne

V.




Yatracos Classes

Sketch of the proof

Theorem (Yatracos, 1985)

V{#5.0) 1) < 3 min Vv, p) + 4 sup [in(B) = u(B)]-




Yatracos Classes

Sketch of the proof

Theorem (Yatracos, 1985)

V{#5.0) 1) < 3 min Vv, p) + 4 sup [in(B) = u(B)]-

Estimation error:

VC Inequality

Eey (sup 110(8) - (B))) < By

~

sup |fin(B) — M(B)|)
BeAg




Yatracos Classes

Sketch of the proof

Theorem (Yatracos, 1985)

V{#5.0) 1) < 3 min Vv, p) + 4 sup [in(B) = u(B)]-

Then, sup,,c » Epn {V(“@e(xl")"“)} < 3e+ 4c\/¥, foralle >0



Yatracos Classes

Sketch of the proof

Theorem (Yatracos, 1985)

V{#5.0) 1) < 3 min Vv, p) + 4 sup [in(B) = u(B)]-

Then, sup,cr ]E]pz {V(Méen(xf)’“)} <3¢, + 4c\/¥

Considering ¢, = (1/+/n)

SE;EPZ {V(:U'é(n(xln),lu,)} Is O(]_/\/E),

where M is o(1) by iii).




The Parametric Scenario

Raginsky's assumptions!:
© O is a bounded set in R (parametric assumption)
@ the mapping © — F is locally uniformly Lipschitz (LUL)

@ the Yatracos classs Ag has a finite VC dimension

YIEEE Trans. on IT,vol 54, no 7, pp- 3059-3077, 2008



The Parametric Scenario

Raginsky's assumptions!:
© O is a bounded set in R (parametric assumption)
@ the mapping © — F is locally uniformly Lipschitz (LUL)

@ the Yatracos classs Ag has a finite VC dimension

Locally Uniformly Lipschitz (Raginsky, 2008)

The mapping © — F is LUL, if there exists r > 0 and m > 0, such
VO € ©, Vo € B,(0),

V(ng; pg) < mll6 =9Il (7)

with B,(0) C © the ball of radius r (with the Euclidean norm)
centered at 6.

YIEEE Trans. on IT,vol 54, no 7, pp. 3059-3077, 2008



The Parametric Scenario

Raginsky's assumptions!:
© O is a bounded set in R (parametric assumption)
@ the mapping © — F is locally uniformly Lipschitz (LUL)

@ the Yatracos classs Ag has a finite VC dimension

Approximation result (from 1y 2)
F is Li-totally bounded.

YIEEE Trans. on IT,vol 54, no 7, pp. 3059-3077, 2008



The Parametric Scenario

Raginsky's assumptions!:
© O is a bounded set in R (parametric assumption)
@ the mapping © — F is locally uniformly Lipschitz (LUL)

@ the Yatracos classs Ag has a finite VC dimension

Approximation result (from 1y 2)

In this setting, for all ¢ > o there is a uniform covering ©. of ©,
with N, ~ O(1/€¥), that induces an e-covering G, (in total
variation) for F.

log, N . . .
Remark: The rate M of the uniform covering associated

with ¢, = 1/+/nis O(log n/n) (bits-per-sample).

YIEEE Trans. on IT,vol 54, no 7, pp- 3059-3077, 2008



The Parametric Scenario

| = » n X x * Ai
";,, s In | 2l x|l w8 ]|n]
L\n ® » » B » L ﬁ"{
l\‘r »~ » " » L P

Ovman - Coveming

&~ SkaweT/

56‘{/&9’; il 1e Mg ﬁ

Figure: Locally uniformly Lipschitz mapping.



The Parametric Scenario

Adopting the practical Skeleton estimate:

0(X{) = arg min sup |ug(B) — fin(B)|,
0€O. Be A,



The Parametric Scenario

Adopting the practical Skeleton estimate:

0.(X{) = arg min sup |ug(B) — fin(B)|,
96@1 BEJ‘IE

Theorem 3
The practical Skeleton scheme with €, = 1/./n satisfies that:

s (Vi gy 0} 90/

and

R({b‘n,l/\/ﬁ © ?n,l/\/ﬁ) s O(Iog n/n)’




Take home points...

o A Coding Theorem for the ZERO-rate density estimation is
stablished.

@ ZERO-rate is achievable for the large collection of L;-totally
bounded densities.

@ The skeleton estimate offers a “concrete” learning-coding
scheme for the problem.




Take home points...

o A Coding Theorem for the ZERO-rate density estimation is
stablished.

o ZERO-rate is achievable for the large collection of L;-totally
bounded densities.

@ The skeleton estimate offers a “concrete” learning-coding
scheme for the problem.

v

Extensions (on going....)

o Study the mini-max optimality of the skeleton

o Formalize connections with universal lossy source coding

@ Explore other coding-learning applications

A\,

Thank you!



	Zero Rate Density Estimation
	Introduction
	Density Estimation under a Bit-Rate Constraint
	The Zero-Rate Consistent Density Coding Theorem
	The Coding Theorem
	Achievability

	Yatracos Classes with Finite VC dimension
	The Parametric Scenario
	Future Work


