Necessary and Sufficient Conditions for ZERO-Rate Density Estimation

Jorge F. Silva[†] and Milan S. Derpich ^{††}

† Department of Electrical Engineering
Universidad de Chile
†† Department of Electronic Engineering
Universidad Técnica Federico Santa María

Wireless Communications Symposium 2011

Outline

- Introduction
- 2 Density Estimation under a Bit-Rate Constraint
- 3 The Zero-Rate Consistent Density Coding Theorem
 - The Coding Theorem
 - Achievability
- 4 Yatracos Classes with Finite VC dimension
- **5** The Parametric Scenario
- 6 Future Work

$$\underbrace{X_1, X_2, \dots, X_n}_{X_1, X_2, \dots, X_n} \sim \operatorname{iid}(\mu)$$
Sensor
$$\underbrace{(b_1, b_2, \dots, b_{nR}) \in \{0, 1\}^{nR}}_{f_n : \mathbb{X}^n \mapsto S} \xrightarrow{\frac{1}{n} \log_2(|S|) = R \text{ bits/sample}}_{p_n : S \mapsto \mathcal{P}(\mathbb{X})}$$

$$\widehat{\mu} = \phi_n(f_n(X_1^N))$$

Applications

- Remote sensors: learning under communication constraint
- Fixed-rate universal lossy source coding (FR-USC)

FR-USC: Raginsky joint coding and modeling

- Raginsky IEEE IT 2008^a, introduced a connection between FR-USC and consistent density estimation under the ZERO-rate regime.
- ZERO-rate consistent estimation ⇒ weakly mini-max universal lossy source coding.
- Results obtained for bounded parametric family of densities under some "learnability" and "regularity conditions".

^aIEEE Trans. on IT,vol 54, no 7, pp. 3059-3077, 2008

Contributions of this Work

- Necessary and sufficient conditions for "ZERO-rate" density estimation
- non-parametric families covered (L₁-totally bounded)
- concrete coding scheme proposed for the achievability part (Skeleton estimate by Yatracos, 1985)
- optimality of the skeleton used to derive rate of convergence results

Basic Definitions

Let $\mathbb{X} \subset \mathbb{R}^d$, and let $\mathcal{P}(\mathbb{X})$ be the collection of probability measures in $(\mathbb{X}, \mathcal{B}(\mathbb{X}))$.

Definition: Total Variation

For v and μ in $\mathcal{P}(\mathbb{X})$ the total variational distance is

$$V(\mu, \nu) = \sup_{A \in \mathcal{B}(\mathbb{X})} |\mu(A) - \nu(A)|. \tag{1}$$

...when the measures have densities:

$$V(\mu, \nu) = \frac{1}{2} \int_{\mathbb{X}} \left| \frac{d\mu}{d\lambda}(x) - \frac{d\nu}{d\lambda}(x) \right| d\lambda(x). \tag{2}$$

Let $\mathcal{F} = \{\mu_{\theta} : \theta \in \Theta\} \subset \mathcal{AC}(\mathbb{X})$ be an indexed collection of interest.

Learning Rule

A (n, M)-learning rule of length n and size M is a pair (f, ϕ) , with $f: \mathbb{X}^n \to S$ and $\phi: S \to \Theta$, where |S| = M.

- $\pi = \phi \circ f : \mathbb{X}^n \to \Theta$ defines its explicit learning rule,
- $\{\phi(s): s \in S\} \subset \Theta$ defines its codebook,
- $R(\pi) \equiv \log_2(|S|)/n$ defines its rate of the rule in bits-per-sample.

Let $\mathcal{F} = \{\mu_{\theta} : \theta \in \Theta\} \subset \mathcal{AC}(\mathbb{X})$ be an indexed collection of interest.

Learning Scheme

A finite description learning scheme Π with rate sequence $(R_n)_{n\geq 1}$ is a collection of learning rules $\Pi = \{(f_n, \phi_n) : n \geq 1\}$ such that

$$R(\pi_n) = R_n$$
, for all $n \ge 1$. (3)

Let $\mathcal{F} = \{\mu_{\theta} : \theta \in \Theta\} \subset \mathcal{AC}(\mathbb{X})$ be an indexed collection of interest.

Definition: R-rate consistent estimate

The rate $R \geq 0$ is asymptotically achievable for \mathcal{F} , if, if there is a scheme $\Pi = \{(f_n, \phi_n) : n \geq 1\}$, with $\limsup_{n \to \infty} R(\pi_n) \leq R$ and

$$\lim_{n\to\infty} \sup_{\mu\in\mathcal{F}} \mathbb{E}_{\mathbb{P}^n_{\mu}}(V(\mu_{\pi_n(X_1^n)},\mu)) = 0. \tag{4}$$

• Π is an *R*-rate uniformly consistent estimate for \mathcal{F} .

Totally Bounded Classes

 \mathcal{F} is L_1 -totally bounded if $\forall \epsilon > 0$, there is a finite covering $\mathcal{G}_{\epsilon} = \{\mu_i : i = 1, ..., N\}$ in \mathcal{F} such that

$$\mathcal{F} \subset \bigcup_{i=1}^{N} B_{\epsilon}^{V}(\mu_{i}), \tag{5}$$

with $B_{\epsilon}^{V}(\mu) \equiv \left\{ v \in \mathcal{AC}(\mathbb{X}) : \frac{1}{2} \int \left| \frac{d\mu}{d\lambda}(x) - \frac{dv}{d\lambda}(x) \right| d\lambda(x) < \epsilon \right\}$ is the L_1 ball of radius ϵ centered at μ .

Definitions

- Let N_{ϵ} denotes the smallest integer that achieves (5).
- $\mathcal{K}(\epsilon) \equiv \log_2(N_{\epsilon})$ denotes the *Kolmogorov's* ϵ -entropy of \mathcal{F}

Totally Bounded Classes

 \mathcal{F} is L_1 -totally bounded if $\forall \epsilon > 0$, there is a finite covering $\mathcal{G}_{\epsilon} = \{\mu_i : i = 1,..,N\}$ in \mathcal{F} such that

$$\mathcal{F} \subset \bigcup_{i=1}^{N} B_{\epsilon}^{V}(\mu_{i}), \tag{5}$$

with $B_{\epsilon}^{V}(\mu) \equiv \left\{ v \in \mathcal{AC}(\mathbb{X}) : \frac{1}{2} \int \left| \frac{d\mu}{d\lambda}(x) - \frac{dv}{d\lambda}(x) \right| d\lambda(x) < \epsilon \right\}$ is the L_1 ball of radius ϵ centered at μ .

Definitions

- Let N_{ϵ} denotes the smallest integer that achieves (5).
- $\mathcal{K}(\epsilon) \equiv \log_2(N_{\epsilon})$ denotes the *Kolmogorov's* ϵ -entropy of \mathcal{F} .

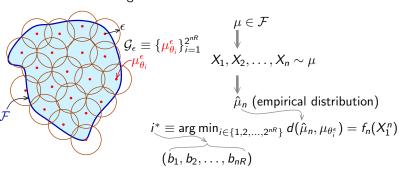
The Coding Theorem

Theorem 1

There is a "ZERO-rate" uniformly consistent scheme Π for the class \mathcal{F} if, and only if, \mathcal{F} is " L_1 -totally bounded".

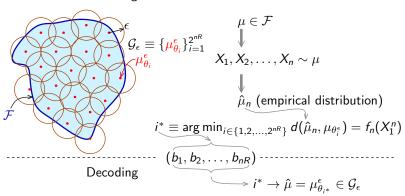
Idea of the proof:

Encoding

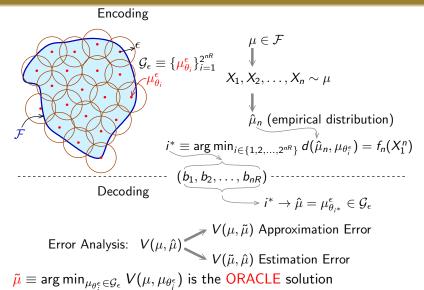


Idea of the proof:

Encoding



Idea of the proof:



- 1. Let $\mathcal{G}_{\epsilon} = \left\{ \mu_{\theta_i^{\epsilon}} : i = 1, .., N_{\epsilon} \right\}$ denote the ϵ -skeleton of \mathcal{F} .
- 2. Let $\Theta_{\epsilon} \equiv \{\theta_i^{\epsilon} : i = 1, ..., N_{\epsilon}\}$ the index set of \mathcal{G}_{ϵ} in Θ .
- 3. Let us define the Yatracos class of G_{ϵ} by

$$\mathcal{A}_{\epsilon} \equiv \left\{ A_{i,j}^{\epsilon}, A_{j,i}^{\epsilon} : 1 \leq i < j \leq N_{\epsilon} \right\}, \text{ with:}$$

$$\mathbf{A}_{i,j}^{\epsilon} \equiv \left\{ x \in \mathbb{X} : \frac{d\mu_{\theta_i^{\epsilon}}}{d\lambda}(x) > \frac{d\mu_{\theta_j^{\epsilon}}}{d\lambda}(x) \right\} \subset \mathbb{X}.$$

4. Minimun distance estimate

$$\hat{\theta}_{\epsilon}(X_1^n) \equiv \arg\min_{\theta_i^{\epsilon} \in \Theta_{\epsilon}} \sup_{B \in A} \left| \mu_{\theta_i^{\epsilon}}(B) - \hat{\mu}_n(B) \right|,$$

with $\hat{\mu}_n$ the standard empirical measure.

- 1. Let $\mathcal{G}_{\epsilon} = \left\{ \mu_{\theta_i^{\epsilon}} : i = 1, .., N_{\epsilon} \right\}$ denote the ϵ -skeleton of \mathcal{F} .
- 2. Let $\Theta_{\epsilon} \equiv \{\theta_{i}^{\epsilon} : i = 1, ..., N_{\epsilon}\}$ the index set of \mathcal{G}_{ϵ} in Θ .
- 3. Let us define the Yatracos class of \mathcal{G}_{ϵ} by

$$\mathcal{A}_{\epsilon} \equiv \left\{ A_{i,j}^{\epsilon}, A_{j,i}^{\epsilon} : 1 \leq i < j \leq N_{\epsilon} \right\}, \text{ with:}$$

$$A_{i,j}^{\epsilon} \equiv \left\{ x \in \mathbb{X} : \frac{d\mu_{\theta_i^{\epsilon}}}{d\lambda}(x) > \frac{d\mu_{\theta_j^{\epsilon}}}{d\lambda}(x) \right\} \subset \mathbb{X}.$$

4. Minimun distance estimate

$$\hat{\theta}_{\epsilon}(X_1^n) \equiv \arg\min_{\theta_i^\epsilon \in \Theta_\epsilon} \sup_{B \in \mathcal{A}_\epsilon} \left| \mu_{\theta_i^\epsilon}(B) - \hat{\mu}_n(B) \right|,$$

with $\hat{\mu}_n$ the standard empirical measure.

- 1. Let $\mathcal{G}_{\epsilon} = \left\{ \mu_{\theta_i^{\epsilon}} : i = 1,..,N_{\epsilon} \right\}$ denote the ϵ -skeleton of \mathcal{F} .
- 2. Let $\Theta_{\epsilon} \equiv \{\theta_i^{\epsilon} : i = 1, ..., N_{\epsilon}\}$ the index set of \mathcal{G}_{ϵ} in Θ .
- 3. Let us define the Yatracos class of \mathcal{G}_{ϵ} by

$$\mathcal{A}_{\epsilon} \equiv \left\{ A_{i,j}^{\epsilon}, A_{j,i}^{\epsilon} : 1 \leq i < j \leq N_{\epsilon} \right\},$$
 with:

$$\mathbf{A}_{i,j}^{\epsilon} \equiv \left\{ x \in \mathbb{X} : \frac{d\mu_{\theta_i^{\epsilon}}}{d\lambda}(x) > \frac{d\mu_{\theta_j^{\epsilon}}}{d\lambda}(x) \right\} \subset \mathbb{X}.$$

Minimun distance estimate:

$$\hat{\theta}_{\epsilon}(X_1^n) \equiv \arg\min_{\substack{\theta_i^{\epsilon} \in \Theta_{\epsilon} \ B \in A_{\epsilon}}} \left| \mu_{\theta_i^{\epsilon}}(B) - \hat{\mu}_n(B) \right|,$$

with $\hat{\mu}_n$ the standard empirical measure

- 1. Let $\mathcal{G}_{\epsilon} = \left\{ \mu_{\theta_i^{\epsilon}} : i = 1,..,N_{\epsilon} \right\}$ denote the ϵ -skeleton of \mathcal{F} .
- 2. Let $\Theta_{\epsilon} \equiv \{\theta_{i}^{\epsilon} : i = 1, ..., N_{\epsilon}\}$ the index set of \mathcal{G}_{ϵ} in Θ .
- 3. Let us define the Yatracos class of \mathcal{G}_{ϵ} by

$$\mathcal{A}_{\epsilon} \equiv \left\{ A_{i,j}^{\epsilon}, A_{j,i}^{\epsilon} : 1 \leq i < j \leq N_{\epsilon}
ight\},$$
 with:

$$\mathbf{A}_{i,j}^{\epsilon} \equiv \left\{ x \in \mathbb{X} : \frac{d\mu_{\theta_i^{\epsilon}}}{d\lambda}(x) > \frac{d\mu_{\theta_j^{\epsilon}}}{d\lambda}(x) \right\} \subset \mathbb{X}.$$

4. Minimun distance estimate:

$$\hat{\theta}_{\epsilon}(X_1^n) \equiv \arg\min_{\theta_{\epsilon}^{\epsilon} \in \Theta_{\epsilon}} \sup_{B \in A_{\epsilon}} \left| \mu_{\theta_{i}^{\epsilon}}(B) - \hat{\mu}_{n}(B) \right|,$$

with $\hat{\mu}_n$ the standard empirical measure.

Estimation-approximation error bound

Theorem (Yatracos, 1985)

$$V(\mu_{\hat{\theta}_{\epsilon}(X_1^n)}, \mu) \leq 3 \min_{v \in \mathcal{G}_{\epsilon}} V(v, \mu) + 4 \sup_{B \in \mathcal{A}_{\epsilon}} |\hat{\mu}_n(B) - \mu(B)|.$$

Theorem (Yatracos, 1985)

$$V(\mu_{\hat{\theta}_{\epsilon}(X_1^n)}, \mu) \leq 3 \min_{v \in \mathcal{G}_{\epsilon}} V(v, \mu) + 4 \sup_{B \in \mathcal{A}_{\epsilon}} |\hat{\mu}_n(B) - \mu(B)|.$$

Estimation error:

Theorem (from Hoeffding's Inequality, 1963)

$$\mathbb{E}_{\mathbb{P}^n_{\mu}}\left(\sup_{B\in\mathcal{A}_{\epsilon}}|\hat{\mu}_n(B)-\mu(B)|\right)\leq \sqrt{\frac{\log(2N_{\epsilon}^2)}{2n}},\ \forall \epsilon>0,\ \forall \mu$$

Estimation-approximation error bound

Theorem (Yatracos, 1985)

$$V(\mu_{\hat{\theta}_{\epsilon}(X_1^n)}, \mu) \leq 3 \min_{v \in \mathcal{G}_{\epsilon}} V(v, \mu) + 4 \sup_{B \in \mathcal{A}_{\epsilon}} |\hat{\mu}_n(B) - \mu(B)|.$$

Then,
$$\sup_{\mu \in \mathcal{F}} \mathbb{E}_{\mathbb{P}^n_{\mu}} \left\{ V(\mu_{\hat{\theta}_{\epsilon}(X_1^n)}^{n}, \mu) \right\} \leq 3\epsilon + \sqrt{\frac{8 \log(2N_{\epsilon}^2)}{n}}$$
, for all $\epsilon > 0$

Estimation-approximation error bound

Theorem (Yatracos, 1985)

$$V(\mu_{\hat{\theta}_{\epsilon}(X_{1}^{n})}, \mu) \leq 3 \min_{v \in \mathcal{G}_{\epsilon}} V(v, \mu) + 4 \sup_{B \in \mathcal{A}_{\epsilon}} |\hat{\mu}_{n}(B) - \mu(B)|.$$

Then,
$$\sup_{\mu \in \mathcal{F}} \mathbb{E}_{\mathbb{P}^n_{\mu}} \left\{ V(\mu_{\hat{\boldsymbol{\theta}}_{\boldsymbol{\epsilon}}(X_1^n)}, \mu) \right\} \leq 3\boldsymbol{\epsilon} + \sqrt{\frac{8\log(2N_{\boldsymbol{\epsilon}}^2)}{n}}$$
, for all $\boldsymbol{\epsilon} > 0$

Considering $\epsilon_n^* \equiv \inf \left\{ \epsilon > 0 : \log(2N_\epsilon^2) \le \sqrt{n} \right\}$ (Devroye and Lugosi (1985))

$$\lim_{n \to \infty} \sup_{\mu \in \mathcal{F}} \mathbb{E}_{\mathbb{P}^n_{\mu}} \left\{ V(\mu_{\hat{\boldsymbol{\theta}}_{\boldsymbol{\epsilon^*_n}}(\boldsymbol{X}^n_1)}, \mu) \right\} = 0$$

 $\mu_{\hat{\theta}_{e^*}(X_1^n)}$ uniformly consistent estimate in \mathcal{F} .

The ZERO-rate learning scheme

Coding function:

$$\hat{f}_{n,\epsilon}(x_1^n) = \arg\min_{i \in \{1,...,N_\epsilon\}} \sup_{B \in \mathcal{A}_\epsilon} \left| \mu_{\theta_i^\epsilon}(B) - \hat{\mu}_n(B) \right|$$

• Decoding function: $\hat{\phi}_{n,\epsilon}(i) = \theta_i^{\epsilon} \in \Theta_{\epsilon} \subset \Theta$.

Then the Scheme
$$\hat{\Pi}((e_n^*)_{n\geq 1})\equiv\left\{(\hat{f}_{n,\epsilon_n^*},\hat{\phi}_{n,\epsilon_n^*}):n\geq 1\right\}$$
 is ZERO gave uniform consistent for \mathcal{F}

the rate is
$$R(\hat{\phi}_{n,\epsilon_n^*}\circ\hat{f}_{n,\epsilon_n^*})=rac{\log_2(N_{\epsilon_n^*})}{n}$$
 is $O(1/\sqrt{n})$

The ZERO-rate learning scheme

Coding function:

$$\hat{f}_{n,\epsilon}(x_1^n) = \arg\min_{i \in \{1,...,N_\epsilon\}} \sup_{B \in \mathcal{A}_\epsilon} \left| \mu_{\theta_i^\epsilon}(B) - \hat{\mu}_n(B) \right|$$

• Decoding function: $\hat{\phi}_{n,\epsilon}(i) = \theta_i^{\epsilon} \in \Theta_{\epsilon} \subset \Theta$.

Then the Scheme
$$\hat{\Pi}((\epsilon_n^*)_{n\geq 1}) \equiv \left\{ (\hat{f}_{n,\epsilon_n^*}, \hat{\phi}_{n,\epsilon_n^*}) : n \geq 1 \right\}$$
 is ZERO-rate uniform consistent for \mathcal{F}

the rate is
$$R(\hat{\phi}_{n,\epsilon_n^*} \circ \hat{f}_{n,\epsilon_n^*}) = \frac{\log_2(N_{\epsilon_n^*})}{n}$$
 is $O(1/\sqrt{n})$

Definition

Introduction

The Yatracos class of $\mathcal F$ be, $\mathcal A_{\Theta} \equiv \left\{ A_{\theta,\bar\theta} : \theta, \bar\theta \in \Theta, \theta \neq \bar\theta \right\}$, with $A_{\theta,\bar{\theta}} \equiv \{x \in \mathbb{X} : d\mu_{\theta}/d\lambda(x) > d\mu_{\bar{\theta}}/d\lambda(x)\} \in \mathcal{B}(\mathbb{X}).$

$$\sup_{\mu \in \mathcal{F}} \mathbb{E}_{\mathbb{P}^n_{\mu}} \left\{ V(\mu_{\hat{\theta}_{1/\sqrt{n}}(X_1^n)}, \mu) \right\} \text{ is } O(1/\sqrt{n}), \tag{6}$$

Definition

Introduction

The Yatracos class of \mathcal{F} be, $\mathcal{A}_{\Theta} \equiv \left\{ A_{\theta,\bar{\theta}} : \theta, \bar{\theta} \in \Theta, \theta \neq \bar{\theta} \right\}$, with $A_{\theta,\bar{\theta}} \equiv \left\{ x \in \mathbb{X} : d\mu_{\theta}/d\lambda(x) > d\mu_{\bar{\theta}}/d\lambda(x) \right\} \in \mathcal{B}(\mathbb{X}).$

Theorem 2

Let us assume that:

- i) \mathcal{F} is totally bounded,
- ii) A_{Θ} has a finite Vapnik and Chervonenkis dimension
- iii) and $\log_2(N_{1/\sqrt{n}})$ is o(n).

Then, the skeleton scheme $\hat{\Pi}((1/\sqrt{n})_{n\geq 1})$ has ZERO-rate and

$$\sup_{\mu \in \mathcal{F}} \mathbb{E}_{\mathbb{P}^n_{\mu}} \left\{ V(\mu_{\hat{\theta}_{1/\sqrt{n}}(X_1^n)}, \mu) \right\} \text{ is } O(1/\sqrt{n}), \tag{6}$$

Theorem (Yatracos, 1985)

$$V(\mu_{\hat{\theta}_{\epsilon}(X_1^n)}, \mu) \leq 3 \min_{v \in \mathcal{G}_{\epsilon}} V(v, \mu) + 4 \sup_{B \in \mathcal{A}_{\epsilon}} |\hat{\mu}_n(B) - \mu(B)|.$$

Theorem (Yatracos, 1985)

$$V(\mu_{\hat{\theta}_{\epsilon}(X_1^n)}, \mu) \leq 3 \min_{v \in \mathcal{G}_{\epsilon}} V(v, \mu) + 4 \sup_{B \in \mathcal{A}_{\epsilon}} |\hat{\mu}_n(B) - \mu(B)|.$$

Estimation error:

VC Inequality

$$\mathbb{E}_{\mathbb{P}_{\mu}^{n}}\left(\sup_{B\in\mathcal{A}_{\epsilon}}|\hat{\mu}_{n}(B)-\mu(B)|\right)\leq \mathbb{E}_{\mathbb{P}_{\mu}^{n}}\left(\sup_{B\in\mathcal{A}_{\Theta}}|\hat{\mu}_{n}(B)-\mu(B)|\right)$$

$$\leq c\sqrt{\frac{V}{n}},$$

Theorem (Yatracos, 1985)

$$V(\mu_{\hat{\theta}_{\epsilon}(X_1^n)}, \mu) \leq 3 \min_{v \in \mathcal{G}_{\epsilon}} V(v, \mu) + 4 \sup_{B \in \mathcal{A}_{\epsilon}} |\hat{\mu}_n(B) - \mu(B)|.$$

Then,
$$\sup_{\mu \in \mathcal{F}} \mathbb{E}_{\mathbb{P}^n_{\mu}} \left\{ V(\mu_{\hat{\theta}_{\epsilon}(X_1^n)}, \mu) \right\} \leq 3\epsilon + 4c\sqrt{\frac{\mathsf{V}}{n}}$$
, for all $\epsilon > 0$

Theorem (Yatracos, 1985)

$$V(\mu_{\hat{\theta}_{\epsilon}(X_1^n)}, \mu) \leq 3 \min_{v \in \mathcal{G}_{\epsilon}} V(v, \mu) + 4 \sup_{B \in \mathcal{A}_{\epsilon}} |\hat{\mu}_n(B) - \mu(B)|.$$

Then,
$$\sup_{\mu \in \mathcal{F}} \mathbb{E}_{\mathbb{P}^n_{\mu}} \left\{ V(\mu_{\hat{\boldsymbol{\theta}}_{\boldsymbol{\epsilon_n}}(\boldsymbol{X}_1^n)}, \mu) \right\} \leq 3\epsilon_n + 4c\sqrt{\frac{V}{n}}$$

Considering
$$\epsilon_n = (1/\sqrt{n})$$

$$\sup_{\mu \in \mathcal{F}} \mathbb{E}_{\mathbb{P}_{\mu}^n} \left\{ V(\mu_{\hat{\theta}_{\epsilon_n}(X_1^n)}, \mu) \right\} \ \text{is} \ O(1/\sqrt{n}),$$

where $\frac{\log_2(N_{1/\sqrt{n}})}{n}$ is o(1) by iii).

Raginsky's assumptions¹:

Introduction

- $oldsymbol{0}$ Θ is a bounded set in \mathbb{R}^k (parametric assumption)
- $oldsymbol{0}$ the mapping $\Theta o \mathcal{F}$ is locally uniformly Lipschitz (LUL)
- **1** the Yatracos classs A_{Θ} has a finite VC dimension

Raginsky's assumptions¹:

Introduction

- \bullet is a bounded set in \mathbb{R}^k (parametric assumption)
- $oldsymbol{0}$ the mapping $\Theta o \mathcal{F}$ is locally uniformly Lipschitz (LUL)
- $oldsymbol{0}$ the Yatracos classs \mathcal{A}_{Θ} has a finite $oldsymbol{\mathsf{VC}}$ dimension

Locally Uniformly Lipschitz (Raginsky, 2008)

The mapping $\Theta \to \mathcal{F}$ is LUL, if there exists r > 0 and m > 0, such $\forall \theta \in \Theta, \ \forall \phi \in B_r(\theta)$,

$$V(\mu_{\theta}, \mu_{\phi}) \le m ||\theta - \phi||, \tag{7}$$

with $B_r(\theta) \subset \Theta$ the ball of radius r (with the Euclidean norm) centered at θ .

¹IEEE Trans. on IT,vol 54, no 7, pp. 3059-3077, 2008 (♠) (♣) (♣) (♣) (♣) (♠)

Raginsky's assumptions¹:

Introduction

- $oldsymbol{0}$ Θ is a bounded set in \mathbb{R}^k (parametric assumption)
- $oldsymbol{0}$ the mapping $\Theta o \mathcal{F}$ is locally uniformly Lipschitz (LUL)
- **1** the Yatracos classs A_{Θ} has a finite VC dimension

Approximation result (from 1 y 2)

 \mathcal{F} is L_1 -totally bounded.

Future Work

Introduction

- \bullet is a bounded set in \mathbb{R}^k (parametric assumption)
- $oldsymbol{0}$ the mapping $\Theta o \mathcal{F}$ is locally uniformly Lipschitz (LUL)
- **1** the Yatracos classs \mathcal{A}_{Θ} has a finite VC dimension

Approximation result (from 1 y 2)

In this setting, for all $\epsilon > o$ there is a uniform covering $\tilde{\Theta}_{\epsilon}$ of Θ , with $\tilde{N}_{\epsilon} \sim O(1/\epsilon^k)$, that induces an ϵ -covering $\tilde{\mathcal{G}}_{\epsilon}$ (in total variation) for \mathcal{F} .

Remark: The rate $\frac{\log_2 N_{1/\sqrt{n}}}{n}$ of the uniform covering associated with $\epsilon_n = 1/\sqrt{n}$ is $O(\log n/n)$ (bits-per-sample).

¹IEEE Trans. on IT,vol 54, no 7, pp. 3059-3077, 2008 (♠) (♣) (♣) (♣) (♣) (♠)

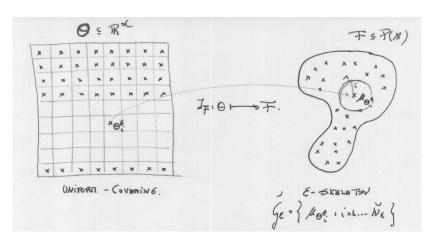


Figure: Locally uniformly Lipschitz mapping.

Density Estimation

$$\widetilde{\theta}_{\epsilon}(X_1^n) = \arg\min_{\theta \in \widetilde{\Theta}_{\epsilon}} \sup_{B \in \widetilde{\mathcal{A}}_{\epsilon}} |\mu_{\theta}(B) - \hat{\mu}_{n}(B)|,$$

Theorem 3

The practical Skeleton scheme with $\epsilon_n=1/\sqrt{n}$ satisfies that:

$$\sup_{\mu \in \mathcal{F}} \mathbb{E}_{\mathbb{P}^n_{\mu}} \left\{ V(\mu_{\tilde{\theta}_{1/\sqrt{n}}(X_1^n)}, \mu) \right\} \text{ is } O(1/\sqrt{n})$$

and

$$R(\tilde{\phi}_{n,1/\sqrt{n}} \circ \tilde{f}_{n,1/\sqrt{n}})$$
 is $O(\log n/n)$

Coding Theorem

$$ilde{ heta}_{\epsilon}(X_1^n) = \arg\min_{ heta \in ilde{\Theta}_{\epsilon}} \sup_{B \in ilde{\mathcal{A}}_{\epsilon}} |\mu_{ heta}(B) - \hat{\mu}_{n}(B)|,$$

Theorem 3

The practical Skeleton scheme with $\epsilon_n = 1/\sqrt{n}$ satisfies that:

$$\sup_{\mu \in \mathcal{F}} \mathbb{E}_{\mathbb{P}^n_{\mu}} \left\{ V(\mu_{\tilde{\theta}_{1/\sqrt{n}}(\mathsf{X}^n_1)}, \mu) \right\} \text{ is } O(1/\sqrt{n}),$$

and

$$R(\tilde{\phi}_{n,1/\sqrt{n}} \circ \tilde{f}_{n,1/\sqrt{n}})$$
 is $O(\log n/n)$,

Take home points...

- A Coding Theorem for the ZERO-rate density estimation is stablished.
- ZERO-rate is achievable for the large collection of L₁-totally bounded densities.
- The skeleton estimate offers a "concrete" learning-coding scheme for the problem.

Extensions (on going....

- Study the mini-max optimality of the skeleton
- Formalize connections with universal lossy source coding
- Explore other coding-learning applications

Thank vou!

Take home points...

- A Coding Theorem for the ZERO-rate density estimation is stablished.
- ZERO-rate is achievable for the large collection of L₁-totally bounded densities.
- The skeleton estimate offers a "concrete" learning-coding scheme for the problem.

Extensions (on going....)

- Study the mini-max optimality of the skeleton
- Formalize connections with universal lossy source coding
- Explore other coding-learning applications

Thank you!

